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Executive Summary

This report describes the Applied Meteorology Unit's (AMU) objective verification of the National Centers
for Environmental Prediction ('NCEP) 29-kin Eta (Meso-Eta) numerical weather prediction model. The
verification was designed to identify the model's error characteristics for surface and upper-air point forecasts at
Cape Canaveral Air Station (XMR), FL, Tampa Bay (TBW), FL, and Edwards Air Force Base (EDW), CA.

These stations are selected because they are important for 45th Weather Squadron (45WS), Spaceflight
Meteorology Group (SMG), and National Weather Service (NWS) Melbourne (MLB) operational concerns.
The report includes a concise pull-out summary designed to serve the interests of operational forecast users.

The AMU's objective verification was originally designed to examine Meso-Eta model forecast errors over

separate four-month periods from May through August 1996 (warm season) and from October 1996 through
January 1997 (cool season). Given NCEP's ongoing development of the Eta model and the small sample sizes
obtained from these limited four-month verification periods, the objective portion of the evaluation was
extended to include secondary warm and cool season periods from May through August 1997 and October 1997

through January 1998, respectively. The twin-season comparison of forecast accuracy is helpful for model users
by highlighting the model's characteristic strengths and weaknesses before and at_r the incorporation of model
updates.

Results from the twin-season objective verification which can be important for operational forecast
concerns include the following:

The surface error characteristics vary widely by location, season, and time of day. The results are
utilized most effectively by considering the model biases for each parameter separately and making
appropriate adjustments to the forecasts.

The random error component reveals substantial day-to-day variability in forecast accuracy. The
random errors are caused primarily by the model's inability to resolve localized phenomena such
as wind gusts, temperature gradients, or the effects of thunderstorms. While it is possible to
partially adjust for model biases, it is much more difficult to accommodate the variability in

forecast errors on any given day.

Updates to the model's physical parameterizations produced identifiable and statistically

significant changes in forecast accuracy at each location. Some changes enhanced forecast
accuracy while others created larger systematic errors. It is important that model users maintain
awareness of ongoing model changes. Such changes are likely to modify the basic error
characteristics, particularly near the surface.

On average, the forecast soundings at XMR and TBW during the warm season are too stable. The
height of the lower tropospheric inversion at XMR and TBW was misrepresented during the cool

season. Forecast biases for wind speed and direction are small at all three locations, but the
random error component dominates the day-to-day variability. Given this variability, real-time
assessment of forecast accuracy is necessary on any given day to help users determine if the model
forecasts are consistent with current observations.

The statistics did not reveal annual changes in upper-air forecast errors that could be attributed
solely to February and August 1997 model updates. Moreover, since error growth is minimal, the
error characteristics for upper-air forecasts apply, on average, at any time during the forecast
period.

The day-to-day fluctuations in convective indices are not well represented by the Meso-Eta model

throughout the warm season. The convective index forecasts are most reliable overall during the
cool season when, under normal circumstances, they provide little added value for most
operational forecasting applications.
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Stratificationof errors by the 950- to 600-rob layer-averaged wind direction does not reveal any
substantial changes in error characteristics. Further, the stratification indicates that the day-to-day
variations in the forecast errors may be more difficult to anticipate than general changes in the

overall error characteristics under different wind regimes.

The AMU's statistical evaluation of Meso-Eta forecast accuracy identified a few biases that may result from

inadequate parameterization of physical processes near the surface. Since the model bias or systematic error
generally is small, most of the total model error results from day-to-day variability in the forecasts and/or
observations. To some extent, these nonsystematie errors reflect the variability in point obsewations that sample

spatial and temporal scales of atmospheric phenomena which cannot be resolved by the model. On average,
Meso-Eta point forecasts may provide useful guidance for predicting the evolution of the larger scale
environment. A more substantial challenge facing model users in real time is the discrimination of
nonsystematic errors which could inflate the total forecast error.

While some of the changes in error characteristics due to model updates were expected, others were not
consistent with the intent of the updates and further emphasize the need for ongoing sensitivity studies and
locali7ed statistical verification efforts. By pursuing ongoing localized verification efforts, model users could

maintain an awareness of model updates and the effects that such changes have on point forecast accuracy within
their area of responsibility.
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1.0 Introduction

1.1 Motivation for Objective Point Forecast Verification

Weather support for ground and aerospace operations at the Kennedy Space Center (KSC) and Cape

Canaveral Air Station (CCAS) requires accurate forecasts of winds, clouds, ceilings, fog, rain, lightning, and
visibility. Numerical weather prediction models provide guidance for such forecasts by estimating the future
values of these and other parameters. Specifically, weather observations are assimilated into the forecast model

and integrated forward in time using dynamical equations of motion and other more empirical physical
parameterizations. Throughout the integration, surface and upper-air weather variables axe periodically
extracted from the model at a point that corresponds geographically to the location of interest. These point

forecasts are often used to help identify future changes in temperature, moisture, or winds that may contribute to
the formation of adverse weather.

For several years, Model Output Statistics (MOS; Glahn and Lowry 1972; Carter et al. 1989) from
numerical weather prediction models such as the National Center for Environmental Prediction (NCEP) Medium

Range Forecast and Nested Grid Models have been used prevalently as sources of localized point forecast
guidance. Given an adequately populated sample ofrans in which the model configuration is not changed, MOS
provides added value to the forecast process by statistically accounting for characteristic strengths and

weaknesses in model forecasts at specific locations. However, NCEP is now entering an era where
improvements in modeling capabilities are occurring so rapidly (McPherson 1994) that traditional MOS
applications may no longer be appropriate for newer models. On the other hand, the combination of data
assimilation techniques, refinements in model physics, and advances in computing efficiency (McPherson 1994)

are enhancing the accuracy of deterministic model point forecasts.

In order to maximize the benefits of point forecast guidance within an environment of ongoing changes, it is
helpful for both forecasters and model developers to maintain an objective awareness of a model's error

characteristics at specific locations. For example, the development of local techniques to help correct
identifiable model errors in real time could improve objective point forecast accuracy (e.g. Homleid 1995;
Stensrud and Skindlov 1996; Baldwin and Hrebenach 1998). Moreover, periodic examination of model error
characteristics could help developers diagnose and correct possible deficiencies in the model's physical
parameterizations.

1.2 Precedent and Progress

In the spring of 1996, the Applied Meteorology Unit (AMU) began an evaluation of the NCEP 29-kin Eta
(Meso-Eta) model. The goal was to document the model's error characteristics for the U.S. Air Force 45th
Weather Squadron (45WS), the National Weather Service (NWS) Melbourne (MLB), and the NWS Spaceflight
Meteorology Group (SMG). The evaluation originally comprised objective and subjective verification

strategies designed to measure overall forecast utility. The original evaluation was conducted over separate
four-month periods from May through August 1996 (warm season) and from October 1996 through January
1997 (cool season).

Following the initial evaluation, Manobianco and Nutter (1997; hereafter MN97) concluded that the small
sample sizes obtained from the four-month verification periods limited the quality of the objective verification
results. Meanwhile, NCEP continues to update the configuration and physical parameterizations of the

operational Eta model that could induce changes in forecast accuracy. For these reasons, the objective portion
of the evaluation was extended for a second year to include additional warm and cool season periods from May
through August 1997 and October 1997 through January 1998, respectively.

1.3 Applied Meteorology Unit Tasking

Under the Mesoscale Modeling Task (005), Subtask 2, the AMU evaluated the most effective ways to use
the Meso-Eta model to meet 45WS, SMG and NWS MLB requirements (MN97). The evaluation methodology
was determined by a technical working group consisting of several meteorologists and forecasters from the
AMU, 45WS, SMG, and NWS MLB. Based on recommendations from the technical working group, the AMU



determined the data acquisition requirements, and designed and implemented the evaluation protocol. Using the
existing resources and methodology established for Subtask 2, the objective portion of the Meso-Eta verification

was extended for a second year under the Mesoscale Modeling Task (005), Subtask 6.

1.4 Report Objectives and Organization

The objectives of this extended statistical evaluation are to:

• Assess Meso-Eta point forecast accuracy at three specific locations important for SMG, 45WS,
and NWS MLB operational concerns:

Edwards Air Force Base, California (EDW)
Shuttle Landing Facility, Florida (TTS)
Tampa International Ah'port, Florida (TPA)

• Determine the effect of ongoing model changes on local point forecast accuracy.

The "ITS and EDW stations are select_i because they are the primary and secondary landing sites for the
Shuttle. The TPA site is chosen to compare model errors at two coastal stations on the eastern ('ITS) and
western (TPA) edge of the Florida peninsula. Forecast accuracy is evaluated statistically for the same forecast
variables examined in the original evaluation (Table 1.I). Surface variables are examined as a function of time
while upper-air variables are examined as a function of both time and height.

Table 1.1. Meso-Eta verification parameters.
Parameter Levels

Mean sea-level pressure
Wind speed and direction 10 m

Temperature and dew point temperature 2 m

Wind speed and direction plus u, v components Selected Levels

Wind speed and direction 1000-100 nab
Temperature
Mixing Ratio by

25 nab increments
Geopotential Height

Precipitable water (FWAT)
Convective available potential energy (CAPE)

Convective int£oition (CIN)
Lifted index (LIFT)

K index (KINX)

Ground relative helicity (HLCY)
Microburst day potential index (MDPI)

Thickness

Mean layer wind

Mean layer relative humidity

N

N

0-3 km

1000-850 nab
850-500 mb
850-500 nab

A brief overview of the Eta model and its configuration is presented in section 2. Procedures for data
collection and statistical analysis are described in section 3. Complete results for surface, upper-air, and
convective index forecasts are presented in sections 4, 5, and 6, respectively. Results for layer averaged
quantities are discussed in section 7, while efforts to stratify statistical results by wind direction are discussed in

section 8. A review of subjective model performance as documented by MN97 is presented in section 9.
Finally, the report concludes in section 10 with a summary of results and recommendations for future work.

Readers not interested in studying the full details of all the statistical results may review the model

performance summaries offered in sections 4.1, 5.1, and 6.1 and the conclusions in section 10. The performance
summaries axe designed to enhace the utility of Meso-Eta point forecast guidance in real-time forecast



operations.The summaries are therefore condensed for quick reference in Appendix E, in a mini booklet
designed to be removed from this report, and on a diskette containing an HTML formatted summary for use on
any desk'top computer.

2.0 Eta Model Overview

The primary mesoscale modeling efforts at NCEP are focused on the development of the Eta model. A
detailed summary of past Eta model development, including references, is provided in Appendix A. The

following points are most important for operational users:

• The ongoing development of the Eta model will continue.

• NCEP implemented changes to the model's physical parameterizations midway through the
AMU's 2-year objective evaluation. The statistics are stratified accordingly.

• The statistical evaluation was conducted on a version of the Eta model with 50 vertical levels and a

29-kin horizontal grid spacing.

• The current operational version has 45 vertical levels and a 32-km horizontal grid spacing. This

version is run four times per day.

3.0 Data and Analysis Method

3.1 Data Collection Periods

The AMU's objective and subjective verification was originally designed to consider 29-kin Eta model
forecast errors over separate four-month periods fi'om May through August 1996 (warm season) and from
October 1996 through January 1997 (cool season). Given the ongoing changes to the Eta model configuration

and the small sample sizes obtained from these limited four-month verification periods, the objective portion of
the evaluation was extended to include secondary warm and cool season periods from May through August 1997
and October 1997 through January 1998, respectively. The correspondence between these twin-seasonal

evaluation periods and relevant Eta model updates is described in Table 3.1. The most substantial modifications
were implemented in February 1997 at a time that falls between the 1996 and 1997 datasets. The timing of this

update is convenient for the identification of changes in forecast accuracy, particularly for variables influenced
by boundary layer processes.

Table 3. I.
Verification

period
1996 warm season

1996 cool season

1997 warm season

1997 cool season

Definition of seasonal verification periods and notable Eta model updates.
Date

began
I May 1996

I October 1996

1 May 1997

1 October 1997

Date
ended

31 August 1996

31 January 1997

31 August 1997

31 January 1998

Notable Eta model changes

(EMC 1997)

Radiation, cloud fraction, soil
moisture, etc. (18 Feb. 1997)

Corrected PBL depth computation
(19 Aug. 1997)

3.2 Data Collection Methods

Forecasts from the 0300 UTC and 1500 UTC Meso-Eta model cycles were obtained via the internet from
the National Oceanic and Atmospheric Administration's (NOAA) Information Center (NIC) ftp server. These
files contain 33-h forecasts of surface and upper air parameters at 1-h intervals. NCEP extracts these surface

and upper air station forecasts l_om the Meso-Eta model grid point nearest to the existing rawinsonde
observation sites. Note that NCEP simply extracts the forecasts from the nearest grid point and does not



interpolate data from multiple surrounding points to the rawinsonde location. No attempt was made to correct
for location or elevation errors that might exist in the forecast data. Instead, emphasis was placed on evaluating
the raw operational product that is normally available in real time.

Hourly surface observations from TTS, TPA, and EDW are used to verify Meso-Eta surface forecasts.

Upper-air forecasts are verified using available rawinsonde observations from EDW, Cape Canaveral Air
Station (XMR), and Tampa Bay (TBW). Log-linear interpolation of data is used between reported pressure
levels for verification at 25-rob intervals from 1000 to I00 rob. While surface forecasts are verified hourly,
upper-air forecasts are verified only for those hours coinciding with the available rawinsonde release times.
Surface and rawinsonde observation sites are not collocated at XMR and TBW, but the available sites are

separated by not more than about 30 km (i.e. the Meso-Eta grid spacing). In order to avoid confusion, all
subsequent references to surface and upper-air forecast verification will use only the rawinsonde station
identifiers XMR, TBW, and EDW.

3.3 Statistical Analysis Methods

Statistical measures used to quantify Meso-Eta forecast errors (forecast - observed) include the

• Bias,

• Root Mean Square (RMS) error, and
• Error Standard Deviation.

By convention, all errors are defined by subtracting observations from forecasts. A positive bias indicates
that the forecast variable is, on average, greater than observed. A negative bias indicates that the forecast
variable is, on average, less than observed. The RMS error describes the overall magnitude of the total forecast
error and is, by definition, a positive value. The error standard deviation is also a positive value and describes

how widely the forecast errors fluctuate about the bias. This can be interpreted as the magnitude of day-to-day
changes in forecast error. The statistical measures are defined mathematically in Appendix B.

For interpretation of results, it is helpful to recognize that the total model error (RMS) includes
contributions from both systematic and nonsystematic sources. Systematic errors(model biases) are usually

caused by a consistent misrepresentation of such factors as orography, radiation and convection. Nonsystematic
errors are indicated by the error standard deviations and represent the random error component caused by initial
condition uncertainty or inconsistent resolution of scales between the forecasts and observations.

In order to determine if model updates (Table 3.1) led to a statistically significant annual change in forecast
accuracy, a Z statistic (Walpole and Meyers 1989) is calculated for a given parameter and compared with the
normal distribution using a 99% confidence level. Additional details regarding statistical calculations are
provided in Appendix B.

For quality control, gross errors in the data are screened manually and corrected, if possible. Errors that are
greater than three standard deviations from the mean error (bias) are excluded from the final statistics. This
procedure is effective at flagging bad data points and removes less than one percent of the data.

4.0 Surface Forecast Accuracy

Results from the comprehensive statistical evaluation of all variables listed in Table 1.1 are somewhat

overwhelming upon initial review. Therefore, a summary of results is presented in section 4.1 with emphasis on
operational interpretation. The summary is followed by a more complete presentation of results in sections 4.2

and 4.3, including a comparison of errors before and after changes in the model's physical parameterizations.

4.1 Overall Summary and Interpretation

Error characteristics for surface parameter forecasts vary widely by location, season, and time of day. The
statistics can be utilized most effectively by considering the model biases for each parameter separately. For
example, the fact that Meso-Eta wind speed forecasts are too fast on average at XMR (Table 4.1) suggests that

4



forecastaccuracymightbeimprovedbyadjustingsuchguidancetolowerspeeds.Similaradjustmentsshould
bemadetoaccommodatethebiasesidentifiedforotherparameters.

Therandomerrorcomponentrevealssubstantialday-to-dayvariabilityin forecastaccuracy.Formany
parameters,therandomerrorsarelargerthanthecorrespondingbiases,orsystematicmodelerrors.Therandom
errorsarecausedprimarilyby themodel'sinabilityto resolvelocalizedphenomenasuchaswindgusts,
temperaturegradients,ortheeffectsofthunderstorms.Whileit ispossibletopartiallyadjustformodelbiases,it
ismuchmoredifficulttoaccommodatethevariabilityin forecasterrorsonanygivenday. It mighthelpto
comparecurrentobservationswiththelatestforecastguidanceandmakeappropriateadjustments.

AsnumericalweatherpredictionsystemssuchastheMeso-Etamodelareupdatedwithgreatertemporal
andspatialresolution,theytendto exhibitsmallerbiasesandlargererrorstandarddeviations.The
nonsystematic,randomerrorcomponentassociatedwithanymodel'sinabilityto resolvelocalphenomena
preventsperfectforecastguidance.However,therelativelyminorbiasesindicatethatonaverage,point
forecastsprovideusefulguidanceforthebasicsensibleweathervariablesconsideredhere.

Resultsshownin sections 4.2 and 4.3 indicate that changes to the model's physical parameterizations

produced identifiable and statistically significant changes in forecast accuracy at each location. Some changes
enhanced forecast accuracy while others created larger errors. Since the model updates affected the basic error
characteristics, statistics from the extended portion of the evaluation during 1997 are most representative of the

model's current capabilities. Therefore, the error summaries presented in Tables 4.1-4.3 describe the Meso-Eta
model's error characteristics using only the data collected during 1997. However, it is important that model
users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error

characteristics, particularly near the surface.

Table 4.1. Summary of Meso-Eta forecast biases (forecast - observed), RMS errors, and error standard
deviations for surface parameters at XMR during the warm (May through Aug 1997) and cool (Oct 1997

through Jan 1998) seasons. A range of errors reveals fluctuations with time of day as demonstrated in sections
4.2 and 4.3.

Variable Season RMS

Sea-level Warm 1
Pressure

(rob) Cool 1

Warm 1 to 2
Temp.

(°C) Cool 2

Dew Warm 1 to 2
Point

(°C) Cool 1 to 3

Wind Warm 2

Speed
(ms q) Cool 2 to 3

Wind Warm 50 to 70

Dir.

(°) Cool 40 to 60

Bias

+1

0to 1

-1 to 0

0to2

0 to 2

1 to3

+10

+10

Std Dev

1 to2

2

1 to2

I to2

1 to2

1.5

50 to 70

40 to 60

Interpretation

Forecasts tend to be slightly lower than observed.

Small, variable forecast bias with random errors of
lmb.

Forecasts are slightly warm in afternoon,slightly
cool at night. Large random error component.

Slight warm bias throughout the forecast cycle.
Random error contributes more than bias.

Forecasts are slightly dry on average. Random error
contributes more than bias.

Forecasts are typically wetter than observed.

Forecast winds are too fast on average.

Forecast winds are too fast on average.

Forecasts are nearly unbiased although random
errors are large.

Same as warm season except random errors are
slightly smaller.



Table4.2. Summary of Meso-Eta forecast biases (forecast - observed), RMS errors, and error standard
deviations for surface parameters at TBW during the warm (May through Aug 1997) and cool (Oct 1997

through Jan 1998) seasons. A range of errors reveals fluctuations with time of day as demonstrated in sections
4.2 and 4.3.

Variable Season 1 RMS

Sea-level Warm 1

Pressure

(mb) Cool 1

Warm 2.5
Temp.

(°C) Cool 1 to 3

Dew Warm 1 to 2
Point

(°C) Cool 1 to 3

Wind Warm 1.5

Speed
(m s -l) Cool 2

Wind Warm 50 to 80
Dir.

(o) Cool 30 to 50

Bias

-1 toO

+0.5

-3 to 1

-1 to3

-1 toO

0

+1

0to 1

-30 to 0

-20 to 0

Std Dec

1 to2

1 to2

1 to2

1 to3

1 to2

1.5

50 to 80

30 to 50

Interpretation

Forecasts tend to be slightly lower than observed.

Small, variable forecast bias with random errors of
lmb.

Forecasts are too warm in the afternoon, too cool at
night.

Forecasts are too warm in the afternoon, too cool at
night.

Forecasts are slightly dry on average. Random error
contributes more than bias.

Forecasts are unbiased but random errors reduce

accuracy.

Small forecast bias. Random errorcontributesmore

thanbias.

Forecast winds are slightly fast on average.

Forecast winds shouldbe backed slightly to better
match the observations.

Same as warm season except random errors are
smaller.

Table 4.3. Summary of Meso-Eta forecast biases (forecast - observed), RMS errors, and error standard
deviations for surface parameters at EDW during the warm (May through Aug 1997) and cool (Oct 1997
through Jan 1998) seasons. A range of errors reveals fluctuations with time of day as demonstrated in sections
4.2 and 4.3.

Variable Season RMS

Sea-level Warm I to3

Pressure

(nab) Cool 2 to3

Warm 3 to6
Temp.

(°C) Cool 3 to 5

Dew Warm 3 to 9
Point

(°C) Cool 3 to 6

Wind Warm 2 to 6

Speed
(m sq) Cool 2 to 3

Wind Warm 20 to 90
Dir.

(o) Cool 60 to 90

Bias

-2 to 0

0 to3

-6 to-2

-4to0

0to 8

-1 to 5

-7 to-1

-2 to 0

0to30

0 to 30

Std Dev

1.5

2

1 to3

2 to 4

3 to5

3.5

1.5 to 3

2

20 to 90

60 to 90

Interpretation

Forecasts tend to be lower than observed.

Forecasts tend to be greater than observed.

Forecasts are too coldon average.

Forecasts are too cold on average, especially during
the daytime.

Forecasts are too moist on average, especially
during the daytime.

Forecasts are mostly wetter than observed,
especially during thedaytime.

Forecasts too slow on average, especially during the
daytime.

Forecasts too slow on average.

Forecast winds should be veered slightly overnight
to better match the observations.

Same as warm season.



4.2 1996 Surface Forecast Accuracy

In the following section, Meso-Eta point forecast error characteristics for the surface variables in Table 1.1
are examined in greater detail for both the 1996 warm and cool seasons. Although statistics were examined
separately for the 0300 and 1500 UTC forecast cycles, only those from the 0300 UTC cycle are shown here.

Results from the 1500 UTC cycle provide little additional information since positive or negative biases occur
with comparable magnitudes at approximately the same time of day in both forecast cycles. Combining data
from both the 0300 and 1500 UTC cycles as a function of forecast duration tends to cancel out the diurnally
varying errors. For operational concerns, the error characteristics described here for the 0300 UTC forecast

cycle apply equivalently for the 1500 UTC cycle.

4.2.1 1996 Warm Season

4.2.1.1 Mean Sea-Level Pressure

During the 1996 warm season, biases in mean sea level pressure are less than +1 mb at XMR and TBW (Fig

4.1 a). At EDW, the bias varies throughout the forecast period and reaches a maximum of nearly 4 nab around
1300 UTC. Since RMS errors and error standard deviations are comparable in magnitude at XMR and TBW
(Figs. 4.1b, c), much of the total error for these locations evidently is nonsystematic in nature. Conversely, the
large biases at EDW contribute strongly to the RMS error and therefore represent a systematic model error. One

possible explanation for this apparent model deficiency at EDW may be that the forecast point data extracted
from the model are almost 250 m lower than the actual station elevation.

4.2.1.2 2-m Temperature

Warm season biases in 2-m temperature at XMR and TBW follow a diurnal cycle as values range from
about -3 to 1 "C (Fig. 4.1d). The amplitude of the diurnal cycle is larger at EDW, with cold biases reaching

almost -6 °C during the early part of the forecast. Since forecast biases and corresponding RMS errors are
comparable in magnitude at EDW (Figs. 4.1d, e), the larger contribution to the total error for this location
evidently is derived from a systematic model error. This model error at EDW could be related to the incorrect

specification of station elevation. The results at all three locations are also consistent with those from Betts et
al. 1997 and Black et al. 1997 (hereafter BE97 and BL97) who found an excessive range of summer
temperatures due to radiation errors in the 1996 version of the 48-kin Eta model.

4.2.1.3 2-m Dew Point Temperature

Warm season biases in 2-m dew point temperature at XMR and TBW are generally smaller than -_2 °C (Fig.
4.1g). Biases at EDW are positive (moist) during the first 21 h of the forecast cycle (Fig. 4.1g). When viewed
in conjunction with the 2-m temperature bias in Fig. la, the net result is that forecasts at EDW are too cold and

moist over this period.

The studies by BE97 (their Fig. 10b) and BL97 (their Fig. 4b) indicate excessive amounts of 2-m specific
humidity in the forecasts at time zero using regionally averaged data during the summer. Their results also
reveal that after time zero, specific humidity levels are underforecast on average throughout the remainder of the

forecast cycle. Here, zero-hour dew point errors at EDW are consistent with results from those studies but the
enduring positive bias indicates clearly that regionally averaged statistics can mask important error
characteristics that are specific to particular locations. Some of the difficulties in forecasting dew point
temperatures at EDW could relate to problems with PBL mixing and/or incorrect specification of soil moisture
processes as discussed by BE97. Such difficulties would likely be exacerbated by the station elevation error at
EDW and by post-processor errors while translating mixing ratios into 2-m dew point temperatures.
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Figure 4.1. Bias (forecast - observed), RMS error, and error standard deviation for surface parameter forecasts
from the 0300 UTC Meso-Eta cycle during the 1996 warm season. Results are plotted as a function of

verification time at XMR (solid), TBW (dotted), and EDW (dashed). Statistics for mean sea-level pressure

(rob), 2-m temperature and dew point temperature (°C), and 10-m wind speed (In $-1) and direction (o) are shown
respectively in panels a-c, d-f, g-i, j-I and m-o.



4.2.1.4 10-m Wind Speed

Warm season biases in 10-m wind speed range from 0 to -5 m s_ at EDW and from -1 to 2 m s1 at XMR
and TBW (Fig. 4.1j). Therefore, 10-m wind speed forecasts at XMR and TBW tend to be slightly fast on

average while those at EDW are generally too slow. The relatively large increase in the magnitudes of biases
and RMS errors at EDW between about 1500 and 0300 UTC reflects a period during which systematic model

errors comprise the larger portion of the total forecast error (compare Figs. 4. l j-l).

4.2.1.5 10-m Wind Direction

Warm season biases in 10-m wind direction vary within about ±30* at XMR and EDW (Fig 4.1m). The

forecast wind direction at TBW is, on average, counterclockwise (negative) relative to the observed wind
direction. The RMS errors range from about 30 to 90 °, with the largest errors occurring during the middle of the
forecast period (Fig 4.1n). Since the biases are small compared to the error standard deviation, much of the

wind direction error is determined by nonsystematic sources. Since the model cannot temporally or spatially
resolve many local effects which influence wind direction such as topography or vegetation, the magnitude of
variability in wind direction errors is not surprising especially when wind speeds are light.

4.2.2 1996 Cool Season

4.2.2.1 Mean Sea-Level Pressure

During the 1996 cool season, biases in mean sea-level pressure fluctuate from about 1 to -2 mb at XMR and

TBW (Fig 4.2a). The bias is largest at EDW, where mean errors remain steady around 2 mb throughout much
of the forecast period. Since the RMS errors and error standard deviations at XMR and TBW are comparable in
magnitude during most of the forecast cycle, nonsystematic errors evidently provide a strong contribution to the
total error (Figs. 4.2a, b). At EDW however, it is not clear whether systematic or nonsystematic errors

contribute more to the total error for that location (compare Figs. 4.2a-c).

4.2.2.2 2-m Temperature

During the 1996 cool season, 2-m temperature biases are slightly positive at XMR and slightly negative at
TBW, with errors ranging from about 0 to 2 "C and 0 to -2 "C, respectively (Fig. 4.2d). Forecast temperatures at

EDW are about 0 to -4 "C colder than observed on average. Over the first 12 h of the forecast cycle, large error
standard deviations at EDW (Fig. 4.2f) suggest that nonsystematic errors contribute to a substantial portion of
the total model error. During the middle part of the forecast cycle from about 1500 to 0300 UTC, the larger

negative bias at EDW indicates that systematic model errors contribute more strongly to the total error. Cool
season temperature errors at TBW have nearly the same characteristics as those from the previous warm season.
At XMR and EDW however, the cool season results do not clearly show diurnal fluctuations that would

otherwise be consistent with an excessive range of temperatures in the 1996 Eta model configuration.
Additional sensitivity studies are therefore necessary in order to determine other possible sources of systematic

model error that might degrade the accuracy of temperature forecasts during the cool season.

4.2.2.3 2-m Dew Point Temperature

Cool season biases in 2-m dew point temperature at all three stations are generally larger than those of the
previous warm season (compare Figs. 4.1g, 4.2g). Biases at TBW range from about-1 to 3 °C while at XMR, a
moist bias of 3 to 4 *C is evident throughout much of the forecast cycle. Qualitatively, the difference in error
characteristics at XMR and TBW is notable given their relative proximity. Model biases at EDW follow similar
fluctuations with time during both seasons, but reach slightly higher maximum values of around 6 *C during the

cool season at 2100 UTC. Difficulties remain at EDW during the cool season for initializing the zero-hour dew

point temperatures. The overall cool season increase in forecast biases contributes to a corresponding growth in
RMS error at all three locations (Fig. 4.2h). This result suggests that systematic errors in Eta model dew point
temperature forecasts are larger during the cool season.
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4.2.2.4 10-m Wind Speed

Cool season wind speed biases at XMR are about 1 m s"_ greater than those during the warm season

(compare Figs. 4.2j, 4. l j). The combined cool season increases in forecast biases and error standard deviations
at XMR result in R.MS errors which are about 1.5 m s"_ larger than corresponding warm season errors (Figs.

4.2k, 1). Wind speed biases at TBW are comparable during both seasons while the slow bias at EDW improves
in the cool season.

4.2.2.5 10-m Wind Direction

Cool season errors in 10-m wind direction are similar to those of the previous warm season. Biases again

are less than +30 ° at all three locations (Fig. 4.2m). The RMS errors and error standard deviations at XMR and
TBW range from 30 to 70 ° (Figs. 4.2n, o). At EDW, these errors are slightly larger relative to their warm

season values. The greater portion of the total error at all three stations remains nonsystematic in nature (Fig
4.20).

4.3 Changes in Surface Forecast Accuracy During 1997

The AMU's original Meso-Eta evaluation (MN97) was extended, in part, to enhance the quality of results
by increasing sample sizes. However, as described below, the model upgrades implemented between the 1996
and 1997 evaluation periods (Table 3.1) produced many statistically significant changes in forecast accuracy.
For this reason, the data are not combined into a single large sample for evaluation. Instead, the analysis is

repeated here for the 1997 data with emphasis on evaluating changes in forecast accuracy between 1996 and

1997. A comparison of results between the two seasons highlights the necessity for model users to maintain an
awareness of forecast accuracy at specific locations in lieu of ongoing changes.

The following points are considered while evaluating changes in sttrface forecast accuracy during 1997 at

XMR, TBW, and EDW.

Model biases during 1997 are presented to provide an updated assessment of mean forecast

accuracy following the model changes. These results were summarized earlier in Tables 4. I-4.3.

Annual changes in the absolute value of model biases ( 11997 bias I - 11996 bias I ) are
examined to determine whether the model systematic errors became larger or smaller relative to
zero. The use of absolute value assumes, for example, that a cold bias of 2 degrees is as serious

for operational concerns as a warm bias of 2 degrees. More generally, a positive difference reveals
that the systematic error is larger, or farther from zero, and that the forecasts are on average more
biased in 1997. A negative difference reveals that the systematic error is smaller, or closer to zero,
and that the forecasts are on average less biased in 1997.

Whenever changes in forecast biases are statistically significant (Appendix B), efforts are made to
determine whether the changes may be attributed to annual differences in either the mean forecasts
or observations. Whenever bias changes are explained largely by differences in mean forecast
values, it is likely that the model updates led to an improvement or degradation in forecast
accuracy during 1997. Otherwise, the difference simply reflects the interannual variability in the
observations.
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43.1 1997 Warm Season

4.3.1.1 Mean Sea-Level Pressure

During the 1997 warm season, biases in mean sea-level pressure range from about -1 to 0 mb at XMR and

TBW while at EDW, the pressure is underforecast by about -3 to 0 mb (Fig 4.3a). The annual change in
pressure biases at XMR and TBW was nearly zero (Fig. 4.3b). The systematic error at EDW improved by 3 mb
around 1300 UTC while, at other times of day, the error increased by about 2 rob. The standardized Z statistic

indicates that the annual changes in bias at EDW are statistically significant at the 99% confidence level (Fig.
4.3c). The observed sea-level pressure at XMR and TBW during the 1997 warm season was, on average, about
1.5 mb lower than the corresponding 1996 average (Fig. 4.4b). Since the model responded correcdy to this
average decrease in pressure (Fig. 4.4a), the annual change in forecast error was insignificant at XMR and TBW

(Fig. 4.3c). At EDW however, the model failed to capture the increase in the average sea-level pressure
observed for that location in 1997 (Figs 4.4a, b). Since the average forecast pressure remained nearly
unchanged at EDW during 1996 and 1997, it is not clear that the February 1997 model updates contributed to
the changes in pressure forecast errors.

4.3.1.2 2-m Temperature

The 2-m temperature biases at XMR and TBW range from about -3 to 1 °C while at EDW, forecasts are on

average 2 to 6 °C colder than observed throughout much of the forecast cycle (Fig. 4.3d). The annual change in
temperature biases at XMR and TBW was nearly zero (Fig. 4.3e). At EDW, the systematic error increased by
about 3 °C between 1500 and 0600 URIC. The standardized Z statistic indicates that these larger biases at EDW
are statistically significant at the 99% confidence level (Fig 4.3f). Average forecast temperatures at XMR and
TBW increase slightly during 1997 while those at EDW are reduced by about -3 °C (Fig. 4.4c). Observed

temperature climatologies are nearly identical at all three locations during both 1996 and 1997 (Fig. 4.4d).
These results confirm that the stronger cold bias at EDW during the 1997 warm season is driven mostly by a
reduction in forecast temperatures. The reduction of forecast temperatures at EDW during 1997 exacerbates an
existing cold bias and conu'ibutes to a loss of accuracy for that location. These lower temperatures are
consistent with the systematic decrease in the model's incoming solar radiation imposed in February 1997.

4.3.13 2-m Dew Point Temperature

The 2-m dew point temperature biases at XMR and TBW are slightly underforecast by about -1 °C during
the 1997 warm season (Fig. 4.3g). Results at EDW continue to indicate a large positive (moist) bias in the
forecasts at time zero and from about 1500 to 0300 UTC. Annual changes in the errors at XMR and TBW are
less than +1 °C (Fig. 4.3h). At EDW, the change in absolute bias reveals enhanced accuracy over the first part
of the forecast cycle, followed by an increase in error that reaches nearly 6 °C. The Z statistic (Fig. 4.3i)
confirms that the annual changes in 2-m dew point temperatures are statistically significant during the middle of

the forecast cycle at all three stations. The results shown in Fig. 4.4e indicate that these annual changes in bias
are driven mostly by an increase (decrease) in the mean forecast values at EDW (XMR and TBW). By
comparison, relatively minor shifts are noted in the average dew point temperature observations (Fig. 4.4f).

The Eta model updates implemented in February 1997 were designed to reduce PBL mixing and thereby
improve the summer dry bias noted in specific humidity forecasts (BE97; BL97). Although increased values for
2-m dew point temperature forecasts at EDW (Fig. 4.4e) are consistent with the intent of these model updates,
the change exacerbates an existing moist bias. The decreased moisture in the forecasts at XMR and TBW
during 1997 is not expected and cannot be explained from this limited evaluation. However, since the annual
change in systematic error for these locations is less than ±1 °C (Fig. 4.3h), forecast utility should not be
affected.
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Figure 4.3. 1997 warm season bias (forecast - observed), annual difference of absolute bias (AB97 - AB96),
and standardized Z statistics for the 0300 UTC Meso-Eta cycle. Results are plotted as a function of verification
time at XMR (solid), TBW (dotted), and EDW (dashed). Statistics for mean sea-level pressure, 2-m

temperature and dew point temperature, and 10-m wind speed and direction are shown respectively in panels a-
c, d-f, g-i, j-1 and m-o. Units are inks except for the nondimensional Z statistic. Z scores that lie outside the
shaded region indicate that changes between 1997 and 1996 warm season forecast biases are statistically
significant at the 99% confidence level (see Appendix B).
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4.3.1.4 10-m Wind Speed

Wind speed forecasts during the 1997 warm season are slightly fast at XMR and TBW with a continued

slow bias at EDW (Fig. 4.3j). The only statistically significant annual changes occur at EDW around 0200 UTC
where the magnitude of the biases increase by 2 m s"l during 1997 (Figs. 4.3k, 1). It is not clear whether these
changes in bias are driven by model updates alone since the differences between 1996 and 1997 mean forecasts
and observations are both small (Figs. 4.4g, h). This result is not surprising since the Eta model updates
implemented in February 1997 were not designed explicitly to alter the forecast wind fields.

4.3.1.5 10-m Wind Direction

Wind direction biases fluctuate within 4-30° during the 1997 warm season (Fig. 4.3m). The annual change
in systematic error between 1996 and 1997 was less than 30 ° at all three locations (Fig. 4.3n). The standardized

Z statistic reveals that these annual changes in mean error are not statistically significant at the 99% confidence
level. Again, this result is not surprising since the Eta model updates implemented in February 1997 were not
designed explicitly to alter the forecast wind fields.

4.3.1.6 Summary of 1997 Warm Season Changes

The Eta model updates implemented during February 1997 were designed to decrease low-level
temperatures and increase the low-level moisture. The results shown above demonstrate the following changes
in forecast biases at XMR, TBW, and EDW.

Sea-level pressure, wind speed and wind direction biases did not change in response to

internal model changes. Note that the model updates were not designed to affect these
parameters.

• The existing cold, moist bias in temperature and dew point temperature forecasts at EDW
became worse in 1997.

Temperature and dew point temperature biases at XMR and TBW were relatively
unaffected by the model changes.

15



4.3.2 1997 Cool Season

4.3.2.1 Mean Sea-Level Pressure

During the 1997 cool season, biases in sea-level pressure forecasts at XMR and TBW are less than ±1 mb

(Fig. 4.5a). At EDW, the forecast pressures are, on average, 1 to 2 mb greater than observed. The systematic
error at all three locations decreased by about 0 to 1 nab during the 1997 cool season (Fig. 4.5b). Although the
annual changes in error are not statistically significant at EDW, the Z score does reveal a few hours where the
changes are significant at XMR and TBW (Fig. 4.5c). Examination of the annual differences in mean forecast

and observed pressures (Figs. 4.6a, b) does not indicate clearly whether the significant changes in bias at XMR
and TBW could be attributed to a change in either the forecasts or observations.

4.3.2.2 2-m Temperature

The 1997 cool season 2-m temperature forecasts at XMR are on average about 1 °C warmer than observed

(Fig. 4.5d). At EDW, forecasts are again colder than observed throughout much of the forecast cycle, especially

from about 1500 to 0300 UTC. Biases at TBW indicate that the diurnal range of 2-m temperatures is
overforecast slightly with values ranging from about -1 to 2 °C.

The systematic errors at XMR and EDW are comparable during both 1996 and 1997 cool seasons with
annual changes of less than ±1 °C (Fig. 4.5e). At TBW however, the magnitude of the bias in 1997 increases by

about 2 °C during the middle of the forecast period. The statistical significance of this change is supported by
large Z scores (Fig. 4.50.

The increases in mean forecast temperatures at TBW during 1997 are larger than changes in the mean
observed temperatures (Figs. 4.6c, d). But an increase in mean forecast temperatures during local daytime hours

is not consistent with the intent of the February or August 1997 model updates and actually leads to a
degradation of forecast accuracy at TBW. Notably, temperature biases at EDW are nearly identical during both
cool seasons whereas anmml differences in warm season data suggest a strong response to the February 1997

model updates. The statistics shown here, in combination with knowledge of changes to the model's physical
parameterizations, evidently are not adequate to fully explain the source of all changes in systematic model
errors.

4.3.2.3 2-m Dew Point Temperature

The 2-m dew point temperature bias during the 1997 cool season is less than 2 °C at XMR and less than

+1 °C at TBW (Fig. 4.5g). However, results at EDW continue to indicate a large positive (moist) bias in the

forecasts at time zero and during the latter portions of the forecast cycle. While dew point temperature biases at
EDW are similar during both 1996 and 1997 cool seasons, the systematic errors at XMR and TBW decrease by
about 3 °C (Fig. 4.5h). The Z statistic reveals that these annual changes in bias at XMR and TBW are

statistically significant at the 99% confidence level (Fig. 4.5i). The enhanced forecast accuracy at XMR and
TBW evidently results from a combination of lower (drier) dew point temperature forecasts and higher (wetter)
observations on average during 1997 (Figs. 4.6e, f). In spite of the forecast improvements, these findings are
not anticipated since the February and August 1997 model updates were designed to raise near-surface moisture
levels (BE97; BL97).

4.3.2.4 10-m Wind Speed

Wind speed forecasts during the 1997 cool season remain too fast at XMR and TBW and too slow at EDW

(Fig. 4.5j). The greatest annual change in systematic error occurs at XMR where the bias is reduced by at most
1 m s"l (Fig. 4.5k). The Z scores shown in Fig. 4.51 confirm that no statistically significant changes occur in
wind speed biases between the 1996 and 1997 cool seasons. Moreover, differences in mean forecast and
observed wind speed between 1996 and 1997 are similar (Figs. 4.6g, Ix). As during the warm season, this cool

season result is expected since the Eta model updates were not explicitly designed to modify wind speed
forecasts.
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Figure 4.5. 1997 cool season bias (forecast - observed), annual difference of absolute bias (AB97 - AB96),
and standardized Z statistics for the 0300 UTC Meso-Eta cycle. Results are plotted as a function of verification
time at XMR (solid), TBW (dotted), and EDW (dashed). Statistics for mean sea-level pressure, 2-m

temperature and dew point temperature, and 10-m wind speed and direction are shown respectively in panels a-
c, d-f, g-i, j-1 and m-o. Units are inks except for the nondimensional Z statistic. Z scores that lie outside the
shaded region indicate that changes between 1997 and 1996 warm season forecast biases are statistically

significant at the 99% confidence level (see Appendix A).
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4.3.2.5 10-m Wind Direction

The annual change in cool season wind direction bias is less than ±20 ° at all three locations (Fig. 4.5n). The
standardized Z statistic reveals that none of the changes are statistically significant at the 99% confidence level

(Fig. 4.50). Again, these results are not surprising since the Eta model updates were not designed to explicitly
modify the wind fields.

4.3.2.6 Summary of 1997 Cool Season Changes

The Eta model updates implemented during February and August 1997 were designed to decrease low-level

temperatures and increase the low-level moisture. The results shown above demonstrate the following changes
in forecast biases at XMR, TBW, and EDW.

• Sea-level pressure, wind speed and wind direction biases did not change in response to

internal model changes. Note that the model updates were not designed to affect these
parameters.

• A daytime warm bias was introduced for temperature forecasts at TBW. This increase in
error was not anticipated since model changes were designed to reduce temperatures.

• There was no change in the error characteristics for temperature forecasts at EDW during
the cool season. This is in contrast to the large reduction in temperature noted during the

previous warm season.

• The systematic error in dew point temperature forecasts was reduced at _ and TBW.

However, the statistics do not clearly indicate the source of such change.

4.4 10-m Wind Persistence

The only accuracy benchmark specified in the original evaluation protocol was a comparison of 10-m winds
with 1 to 6 h persistence. Since the February and August 1997 model updates did not produce a significant
impact on the accuracy of wind forecasts, the reader is referred to MN97 for this comparison of wind forecasts

with persistence. In general, they found that 1- to 3-h persistence forecasts of wind speed and direction usually
have smaller RMS errors than the corresponding Meso-Eta model forecasts. However, the model forecasts of
these variables are occasionally more accurate than 6-h persistence.
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5.0 Upper Air Forecast Accuracy

The AMU's original Meso-Eta evaluation (MN97) was extended, in part, to enhance the quality of results
by increasing sample sizes. For the surface parameters discussed previously in section 4, it was not reasonable

to combine data from 1996 and 1997 because model updates produced identifiable and statistically significant
changes in forecast accuracy. However, examination of error statistics for the upper-air forecasts at XMR,
TBW, and EDW reveals only subtle changes in their characteristics between 1996 and 1997 (annually stratified

results not shown). This is not surprising since the Eta model changes implemented in February and August
1997 (Table 3.1) were designed primarily to improve deficiencies in forecasts for surface and boundary layer
variables (BE97, EMC 1997). For these reasons, all upper-air data collected during 1996 and 1997 are pooled

into their respective warm and cool season periods to develop generalized profiles of Meso-Eta error
characteristics at XMR, TBW, and EDW.

A summary of results is presented in section 5.1 with emphasis on operational interpretation. The summary

is followed by a more complete description of upper-air forecast accuracy in section 5.2 and an evaluation of
forecast error growth in section 5.3.

In addition to the graphical results in section 5.2, tables are presented in Appendix C which list errors in u

and v wind components, wind speed, and wind direction as a function of height and verification period for XMR
and EDW. These statistics are listed in tabular format for general interest and applications to Shuttle landing
flight rules.

5.1 Summary of Upper-Air Forecast Accuracy

Meso-Eta error chaz_cteristics for upper-air forecasts at XMR, TBW, and EDW remained generally
unchanged between 1996 and 1997 except near the lowest few layers. These characteristics are summarized in

Tables 5.1 and 5.2. The model's error growth during the forecast cycle is _ (section 5.3), implying that
alldatamay be combined intoa singledatasetregardlessofduration.Moreover, sinceerrorgrowth isminimal,

thecharacteristicsoutlinedinTables5.Iand 5.2apply,on average,atany timeduringtheforecastperiod.This

generality does not apply to the surface data where error characteristics varied with lime of day. Results are
summarized for both XMR and TBW together since their basic characteristics were similar.

Table 5. l.

Warm Season (May - Aug)

Summary of Meso-Eta upper-ah- forecast error characteristics at XMR and TBW.

Cool Season (Oct- Jan)

On average, forecasts are about 1 °C too cold below

700 mb and 1 to 2 °C too warm above 700 mb.

Forecasts are too dry below 800 mb and too moist
above 500 rob.

The temperatureand moisture biases indicatethat

forecastsoundingsaretoostableon average.This

couldbe a consequenceofthemodel'sconvective

rainfallparameterization.

Wind speed forecasts are nearly unbiased in the lower
and middle troposphere, but are typically too fast
above 400 rob.

Wind direction forecast biases are less than +10 ° but

the random error component of 40 to 60 °

dominates the da -to-da variabili .

The height of the lower tropospherictemperature

inversionisoftenoverforecast,therebycreatinga

2 °C coldbiasnearthe700-mb level.

Wind speed forecasts are about 1 m s"1too slow in the
middle troposphere and about 1 m s -1 too fast in

the upper troposphere.

Wind direction forecast biases are less than +10 °, but

the random error component of 10 to 40 °

dominates the day-to-day variability.

20



Table 5.2.

Warm Season (May- Aug)
Summary of Meso-Eta upper-air forecast error characteristics at EDW.

Cool Season (Oct - Jan)

Temperature biases are less than +1 °C.

Forecasts tend to retain greater mounts of moisture
than observed except near the 600 mb level.

Wind speed forecasts are 1 to 2 m s_ too slow, but the
random error component of 3 to 5 m s-I dominates

the day-to-day variability.

On average, wind direction forecasts are backed about
10° relative to observations. The random error

component of 30 to 60 ° dominates the day-to-day

variability.

A strong cold bias exists in the forecasts below
700 rob. The bias exceeds --4 °C near the surface.

Forecasts are too moist near the surface, and too dry
above 800 mb.

Wind speeds are 1 to 2 m s"t too slow on average

except near the tropopause. The random error
component exceeds 6 m s_.

On average, wind direction forecasts are backed about
10 ° relative to observations. The random error

component of 30 to 90 ° dominates the day-to-day

variability.

5.2 Detailed Results

The results summarized above in Tables 5.1 and 5.2 are described more completely in this section. The
following discussion is useful because it compares the relationship between systematic and nonsystematic error

in the forecasts. Moreover, speculations are offered that might explain possible sources for errors.

Understanding the source of model error could help forecasters cope with day-to-day variations in upper-air
point forecast error. For example, the results below demonstrate that the forecasts at XMR and TBW tend to be
more thermodynamically stable than observed. However, in the subjective portion of the Meso-Eta evaluation,

MN97 demonstrated that the model typically generates warm season precipitation over Florida too early in the
day. One possible explanation for this discrepancy between overly stable forecast soundings and excessive
precipitation is that the model erodes the stable surface layer and breaks the capping inversion more quickly and

vigorously than observed. Unfortunately, rawinsonde data are not consistently available at sufficient temporal
resolution throughout the daytime hours to validate this hypothesis.

5.2.1 Temperature

Warm season temperature biases at EDW are less than +1 "C (Fig. 5.1a). At XMR and TBW, forecast

temperatures below 700 mb axe about 1 "C colder than observed whereas above 700 mb they are about 1 to 2 "C
warmer than observed. The net effect for warm season forecasts at the Florida stations is a tendency towards a
thermally stable model atmosphere. RMS errors range from about 1 to 2.5 "C and are largest in the upper
troposphere (Fig. 5.1b). In comparison, typical RMS uncertainty in rawimonde temperature observations is

about 0.6 "C (I-Ioehne 1980; Almert 1991). This fact suggests that about half of the nonsystematic error between
the forecasts and observations may be due to measurement uncertainty.

During the cool season, temperature forecasts at EDW exhibit a negative (cold) bias below 700 mb that

exceeds -4 "C near the surface (Fig. 5.1d). At XMR and TBW, temperature biases are less than 1 "C except
around the 700 mb level and above the tropopause. Examination of individual forecast and observed soundings

at XMR throughout the cool season (not shown) reveals that the 700 mb cold bias appears primarily because
model forecasts of the lower tropospheric inversion height are frequently at a higher level than where they are
actually observed. In the middle troposphere, RMS errors in cool season temperature forecasts at EDW are
substantially larger those at XMR and TBW (Fig. 5.1e). Since biases are small above 700 mb at EDW, the
relatively large error standard deviations suggest that a greater portion of the total RMS error is caused by a

large amount of day-to-day variability in the forecast errors (Fig. 5.1 f).
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5.2.2 Mixing Ratio

Warm season mixing ratio biases at XMR and TBW (Fig. 5.2a) indicate that Meso-Eta forecasts are on
average about 1 g kg"l too dry below 700 mb. Conversely, mixing ratio biases at EDW are about 0.5 g kg "l
greater than observed. Between 700 and 500 mb, forecasts at all three locations indicate a negative (dry) bias

while above 500 mb they tend to retain excessive amounts of moisture. In combination with the negative lower
tropospheric temperature biases discussed previously, these results suggest _at warm season model forecasts at

XMR and TBW are typically more stable than observed. Cool season mixing ratio biases at all three locations
reveal excessive moisture near the surface with a rapid vertical transition to a layer with less moisture than

observed (Fig. 5.2d).

RMS errors for the warm season (Fig. 5.2b) drop from around 2.5 g kg "1 at low-levels (1.5 g kg "l at EDW)
to near zero at 200 rob, where there is very little water vapor present in the atmosphere. In the cool season,
RMS errors follow a similar profile at all three stations starting with values of 2 g kg "i near the surface (Fig.

5.2e). Since the error standard deviations shown in Figs. 5.2c and 5.2f are more than double the magnitude of
the mixing ratio biases, nonsystematic errors account for roughly 50 to 75% of the total RMS error. Results

shown in Figs. 5.2b and 5.2e are consistent with those of Rogers et. al (1996), who show 24-h RMS errors in
specific humidity from 48-kin Eta model forecasts across the United States during September 1994 ranging from
nearly 2 g kg "tat 1000 mb to less than 0.1 g kg "l at 250 mb (see their Fig. 7). Note that these calculations for

mixing ratio errors are not normalized by magn/tude and are therefore not representative of percent errors as the
mixing ratio tends toward zero in the upper troposphere.

5.2.3 Wind Speed

Warm season wind speed biases are generally less than ±1 m s"m(Fig. 5.3a). The exception occurs at EDW
where lower tropospheric wind speed forecasts are about 2 m s"_slower than observed. This result is consistent

with the negative (slow) bias in 10-m wind speed forecasts identified at EDW (Fig. 4.1j). Below 400 rob, warm
season RMS errors range from about 2 to 4 m s"_(Fig. 5.3b). RMS errors around the 200 mb level are larger
with values approaching 6 m s"l. For comparison, uncertainties in rawinsonde wind speed measurements are
about 3.1 m s"t (Hoehue 1980). The relatively large nonsystematic error component is derived from some
combination of measurement uncertainty and insufficient model resolution.

During the cool season, forecast wind speeds at XMR and TBW are about 1 m s"1 slower (faster) than

observed in the middle (upper) troposphere (Fig. 5.3d). At EDW, wind speed biases range from 1 to 3 m s"l
except near the surface where forecast wind speeds remain slow. Cool season RMS errors at XlVIR and TBW
are comparable to those found during the warm season and again, receive large conU'ibutions from the

nonsystematic error component (Fig. 5.3e). At EDW, cool season RMS errors above 700 mb are nearly double
those of the warm season with increased contributions from both systematic and nonsystematic errors.
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5.2.4 Wind Direction

Warm season wind direction forecasts at XMR and TBW are nearly unbiased, as mean errors lie within

±I0" (Figs 54a) Biases at EDW are within :_.20"and demonstrate greater variability with height, especially
within the lower troposphere. Moreover, warm season wind direction forecasts at EDW are typically negative,

or counter-clockwise relative to observed values. Although forecast wind direction biases are reasonably small,
RMS errors and standard deviations approach 60" and are nearly twice as large at XMR and TBW as they are at
EDW in the upper troposphere (Figs. 5.4b, c). Hoelme (1980) reports that observational uncertainty in wind
direction decreases with increasing wind speeds from 14" at 10 kt to 2" at 120 kt. In addition to the fact that

observational uncertainty for wind direction is a function of wind speed, the accuracy of forecast wind directions
may also be influenced by wind speed. At most levels, average warm season observed wind speeds (not shown)

at EDW are about 5 to 15 kt faster than those at XMR and TBW with larger differences occurring in the upper
troposphere. Average warm season forecast wind speeds exhibit the same characteristics. Since mean forecast

and observed wind speeds are faster at EDW, it is not surprising that standard deviations in wind direction are
smaller at EDW than those at XMR and TBW. That is, the difference in wind direction standard deviations

between EDW and XMR and TBW could be accounted for, in part, by difficulties in both observing and
forecasting wind directions accurately at low wind speeds.

Cool season errorsin wind directionforecastsare similarto those of the warm season with a few

exceptions.RMS errorsand standarddeviationsatXMR and TBW decreaserelativetowarm season values

(Figs.5.4b,c,e,f). During the cool season,both forecastand observed averagewind speeds (not shown)

increaserelativeto warm season speeds by about 15 to 25 kt at XMR and TBW. Therefore,the upper

troposphericdecreaseinRMS errorsand standarddeviationsinwind directionatXMR and TBW could again

be explainedby the idea thatboth forecastand observed wind directionsare more accurateathigher wind

speeds.

5.2.5 Geopotential Height

Forecast and observed geopotential heights are computed at 25-rob increments using the hypsometric
equation (Wallace and Hobbs 1977, pg. 57). The thickness is determined for each 25-rob layer from the surface
to 100 nab and subsequently added to form an integrated height profile. By definition, the thickness of each
layer is proportional to its mean virtual temperature. Forecast errors in virtual temperature are therefore
manifested as an integrated error in geopotential height that becomes larger with height (Fig. 5.5). Since the

difference between temperature and virtual temperature is typically less than one percent, geopotential height
errors (Fig. 5.5) correspond qualitatively with the upper-level temperature errors discussed earlier (Fig. 5. I).

Geopotential height forecasts are nearly unbiased at EDW during the warm season (Fig. 5.5a) but cool-
season errors exhibit substantial day-to-day variability (Fig. 5.50. The relatively large height bias over the

middle- and upper-troposphere at TBW and XMR is consistent with the integrated effect of the positive (warm)
bias in temperature (Fig. 5.1).
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5.3 Forecast Error Growth

In sections 5.1 and 5.2, it was stated that the Meso-Eta model's systematic error growth during the forecast
cycle is minimal. Following this assumption, all data were combined into a single dataset for verification
regardless of forecast duration. This statement is validated here. The result is valuable for operational
forecasters since the error characteristics outlined in Tables 5.1 and 5.2 apply, on average, at any time during the

forecast cycle.

Since rawinsonde observations are available only twice daily under normal circumstances, it is not possible
to observe the temporal evolution of upper level forecast errors on an hourly basis throughout the forecast

cycle 1. However, separate examination of seasonal forecast errors at three 12-h intervals reveals that upper-

level errors do fluctuate slightly with forecast duration although their vertical profiles remain qualitatively
similar (MN97). Unlike the surface error characteristics, diurnal oscillations are not evident in the upper-air

forecast errors above the lowest few levels. A paired Z statistic is therefore used to determine if seasonal mean
changes in upper-level model biases during a 24-h period represent a statistically significant systematic error

growth (see Appendix B).

Examination of statistics at each of the three 12-h verification intervals (not shown) reveals that the lower

tropospheric cold bias in forecast temperatures (e.g. Fig 5.1) at XMR and TBW becomes more negative with
time during both warm and cool seasons. The corresponding paired Z statistic (Figs. 5.6a, d) indicates that this
growing cold bias is statistically significant over a 24-h period. Following a similar argument, the positive bias

in upper tropospheric temperature forecasts during the warm season at TBW tends to grow stronger with time
(Fig. 5.6a). The significance of the warm season error growth in forecast temperatures near the surface at EDW
(Fig. 5.6a) is questionable due to the possible influence of dittmal variability (e.g., Fig. 4.1a). Most error growth
in mixing ratio forecasts is not statistically significant except near the 200 mb level at TBW (Figs. 5.6b, e). The

only significant change in systematic error (bias) for wind speed forecasts is found near the tropopause during
the warm season at XMR and TBW (Fig. 5.6c). Examination of statistics at each of the three 12-h verification
intervals (not shown) reveals that the positive (fas0 bias in upper tropospheric wind speed forecasts at these

locations (e.g. Fig 5.5a) tends to diminish with time during the warm season.

Although a few exceptions are noted here, the results shown in Fig. 5.6 reveal that the 24-h systematic error
growth for temperature, mixing ratio, and wind speed is not statistically significant at the 99% confidence level.
For the purpose of establishing generalized forecast error characteristics, this result validates our assumption
that sample sizes can be maximized by combining all available upper-air profiles.

1 The 50 MHz wind profiler data at KSC/CCAS are available every 5 rain but are not used for the objective
portion of this study because similar data are not available at TBW or EDW.
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6.0 Convective Indices

Forecast errors are examined for convective indices specified in Table 1.1. Results are limited to XMR and
TBW since convection is usually not a concern at EDW. Except for the 0-3 km helicity (Lilly 1986; Davies-
Jones et al. 1990) and MDPI (Wheeler and Roeder 1996), convective indices axe computed using the numerical

algorithms described in the GEneral Meteorological PAcKage (GEMPAK; desJardins et al. 1997). As with the
upper-air forecast verification, the convective index error statistics are computed using all available
forecast/observation pairs during 1996 and 1997 from both the 0300 UTC and 1500 UTC model runs.

Generalized results of the verification are summarized in section 6.1. However, a more complete analysis

of convective index error characteristics is provided in section 6.2. Forecast errors are quantified using
traditional bias (forecast - observed), RMS error, and error standard deviation statistics (Tables 6.2, 6.3). The
characteristics of the forecasts, observations, and their relationship are also described more completely using

conditional quartile diagrams (Murphy et al. 1989).

The conditional quartile diagram helps visualize the relationship between given forecasts and observations
and can aid operational users by serving as a lookup diagram based on past data. For example, given a
particular forecast value for a convective index, the user can determine its bias, the expected range of observed

values, and its frequency of occurrence relative to other forecast values. A rigorous explanation of conditional
quartile diagrams is provided in Appendix D, but its basic features are as follows.

A _equency histogram (thin vertical lines) describes the distribution of all Meso-Eta
forecasts verifying at the rawinsonde observation times. This histogram helps the
forecaster determine if a given forecast is relatively common, or if it might be considered
an extreme event.

At each of the forecast intervals indicated along the x-axis by the frequency histogram, the
verifying observations are collected into a conditional distribution of observations. Each
of these distributions of observations are conditional based on the occurrence of a

particular forecast value. The conditional distribution of observations helps forecasters
determine the range of observations that axe expected given a particular forecast value.

The conditional distribution of observations is summarized for each given forecast value
by the median, interquartile range (IQR), and minimum and maximum values. The

median represents the middle value of a set of ordered data and is alternately called the
50th percentile or 2nd quartile. Similarly, the IQR represents the difference between the
3rd and 1st quaxtiles (75th and 25th percentiles). Again, these quantities help forecasters

determine the range of observations that are expected given a particular forecast value.

A 45 ° reference line is provided to help indicate conditional biases in the forecasts. If the

median falls below the reference line, the forecast values are more often greater than the
observations associated with that forecast. If the median lies above the reference line, the
forecast values are more often less than the observations associated with that forecast.

6.1 Summary of Convective Index Error Characteristics

Convective indices are vertically integrated quantities. Therefore, slight errors in the forecast vertical

profiles of temperature, moisture, and/or winds are exacerbated through the computation of convective index
error characteristics. The day-to-day variability in observed convective indices is not predicted well by the
Meso-Eta model. The errors tend to be smallest during the cool season when, under normal circumstances, they

provide little added value for operational forecasting purposes. Some of the more generalized warm season
results are summarized in Table 6.1.
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Table 6.I.

Index

Summary of Meso-Eta point forecast error characteristics for convective indices at XMR during
the 1996 and 1997 warm seasons (May-Aus).

Forecast Error Characteristics

Precipitable
Water

LiftedIndex

K-index

LCL

CAPE

0-3 km Helicity

MDPI

Forecasts have a slight dry bias, but are generally accurate across a wide range of values.

Forecasts are more stable than observed. The forecasts tend to be most accurate when

their values are around -3 to --4 °C but the day-to-day variations are not handled well.

Forecast biases are small but a large random error component limits their utility.

Forecast accuracy decreases at lower pressures (greater heights).

Forecasts are too small (stable) on average and are susceptible to very large errors.

Forecasts tend to overestimate the magnitude of the vertically integrated wind shear.

Forecasts are most reliable when values are near 1.0 but a large random error component
limits their utility.

6.2 Convective Index Error Characteristics

6.2.1 Precipitable Water

The frequency distribution of forecast PWAT is comparable during the warm season at both XMR and
TBW (Figs. 6.1a, b). A slight conditional bias indicates that the observed PWAT is often underforecast by

about 0 to 2 ram. This characteristic is confirmed in a more general sense by the overall negative (dry) forecast
bias during the warm season (Table 6.2). The IQR varies from about 5 to 10 mm while the conditional

minimum and maximum observations are distributed evenly relative to the given forecast values. Although the
histogram of forecast PWAT is broader during the cool season, the character of the relationship between the
forecasts and their observations remains mostly unchanged except for a reduction of the conditional dry bias
(compare Figs 6.1a-d and Tables 6.2 and 6.3). In general, forecasts for PWAT are reliable and well refined.

6.2.2 Lifted Index

Warm season lifted index forecasts are distributed from about -5 to 4 *C (Fig. 6.2a, b). A conditional bias is
evident which suggests the forecast soundings typically have greater thermal stability than observed (i.e.,

forecast lifted index is greater than observed, on average). This positive bias appears in the overall sample
statistics (Table 6.2) and was also identified previously in the form of a warm bias in the temperature error
profile (Fig. 5.1 a). Notably, the conditional bias is smallest when the model predicts lifted indices around -3 to

-4 *C. In combination with the overall stable bias, the large variability indicated by the conditional IQR and
extreme observations suggest that day-to-day fluctuations in lifted index are not well represented by the Meso-
Eta model throughout the warm season. During the cool season, the forecast lifted indices are distributed across

a wider range of values (Figs. 6.2c, d). Since the slope of the cool season conditional median is close to that of

the 45 ° reference line, the conditional bias remains small throughout nearly the entire given range of forecast
values. Clearly, lifted index forecasts are most reliable during the cool season.

32



Table 6.2. Bias, RMS error and error standard deviation for warm season (May - August) convective

parameters at XMR and TBW.
Bias RMS Error Std. Dev.

Convective Index XMR TBW

-1.81 -1.49

1.90 1.44

-.37 .97

-5.63 -1.96

-876.91 -543.34

- 1.34 -9.31

5.21 3.58

-.18 -.15

XMR TBW

5.20 5.54

3.22 2.81

6.79 7.07

32.72 35.46

1461.72 1104.69

65.75 63.56

40.46 37.89

.35 .31

XMR TBW

4.87 5.34

2.61 2.41

6.78 7.00

32.23 35.41

1169.46 961.84

65.74 62.88

40.12 37.72

.31 .27

Precipitable Water

Lifted Index

K-Index

LCL

CAPE

Convective Inhibition

Helicity

MDPI

Table 6.3. Bias, RMS error and error standard deviation for cool season (October - January) convective

parameters at XMR and TBW.

Bias R.MS Error Std. Dev.

Convective Index XMR TBW

.31 -1.37

-.61 -.06

2.19 -1.24

16.58 10.64

19.88 7.13

1.88 2.21

10.93 4.17

.06 .05

Precipitable Water

Lifted Index

K-Index

LCL

CAPE

Convective Inhibition

Helicity

MDPI

XMR TBW

4.84 5.01

2.90 2.83

12.11 11.29

39.53 36.65

393.51 291.89

32.55 47.05

77.21 79.69

.27 .24

XMR TBW

4.83 4.82

2.83 2.83

11.91 11.22

35.88 35.07

393.01 291.81

32.50 46.99

76.43 79.58

.26 .24
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Figure 6.1. Quartile diagram showing the conditional distribution of observed PWAT (ram) associated with
given forecast values and a histogram of the marginal distribution of forecasts. For each forecast of PWAT
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6.2.3 K-Index

The frequency distribution of warm season K-index forecasts reveals that the indices most often lie in the

range from approximately 28 to 32 °C (Figs. 6.3a, b). The conditional bias within this range is small, but the
IQR of about 8 °C reveals substantial day-to-day variability in the forecast errors. The overall sample statistics
(Table 6.2) also indicate that the K-index forecasts are nearly unbiased and that the error standard deviations are

large in comparison to the mean. Cool season K-index forecasts are more widely distributed than the warm
season forecasts (Figs. 6.3c, d). When cool season K-index forecasts are negative, they tend to indicate slightly
greater stability than observed soundings. Conversely, when positive, the forecasts tend to indicate slightly less
stability than observed.

6.2.4 Lifted Condensation Level

When air parcels in the forecast soundings are lifted dry adiabatically, they most frequently reach saturation
around 990 to 1000 mb during both warm and cool seasons (Fig. 6.4). The conditional distMbution of the
observed lifted condensation level (LCL) reveals that forecasts are most reliable when the LCL is closer to the

ground. In particular, the large IQR and spread of extreme conditional observations reveals that LCL forecasts

are less refined at lower pressures. During the cool season, the conditional median more closely follows the 45 °
reference line, but the distributions still exhibit a large IQR. Since subtle errors in low-level temperature and
moisture will affect the calculation of forecast and observed LCL, it is not surprising that the variability is so
large

6.2.5 Convective Available Potential Energy

During the warm season, the forecast convective available potential energy (CAPE) distribution reveals that
most forecasts contain nearly zero CAPE and thus are quite stable (Fig. 6.5). When warm season CAPE
forecasts are less than about 1500 J kg "I, the conditional median of the observed CAPE distribution is larger than
the given forecast values (Figs. 6.5a, b). This result indicates that at smaller values, the warm season CAPE

forecasts tend to underestimate the observed instability - a fact which is supported by the negative overall
sample bias (Table 6.2). The convective potential of the forecast soundings could be limited by the positive
(warm) bias in middle- and upper-tropospheric temperature (Fig. 5.1a) since, in that environment, liI_i air

parcels would require greater energy to attain positive buoyancy. It is noteworthy that even when zero CAPE is
forecast the maximum observed CAPE at XMR may exceed 4100 J kg "l during the warm season (3000 J kg "l at
TBW). Therefore, warm season CAPE forecasts are susceptible to large errors.

During the cool season, the frequency distribution of forecast CAPE at XMR and TBW reveals that the

Meso-Eta model often predicts a relatively stable environment with many forecast soundings again supporting
zero CAPE (Figs. 6.5c, d). Unlike warm season results, the cool season forecasts of small CAPE (i.e., near
zero) exhibit little conditional bias and thus are reliable. However, the wide distribution of the conditional
extreme observations indicates that both warm and cool season CAPE forecasts occasionally suffer large errors.

Given cool season forecasts of large CAPE, a conditional bias becomes evident which suggests the
environmental instability is overestimated. However, the small sample sizes associated with such forecasts
decrease the robustness of this particular result.
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Figure 6.3. Quartile diagram showing the conditional distribution of observed K-index (°C) associated with

given forecast values and a histogram of the marginal distribution of forecasts. For each forecast of K-index

(indicated by histogram), the minimum (maximum) observations are shown by stars (circles), the .25 and .75

quartiles are shown by dotted lines, and the .50 quartile (or median) is shown by a heavy solid line. See text for

additional details.
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6.2.6 Convective Inhibition

The frequency distributions of convective inhibition (CIN; negative area on a skew-T diagram) are similar

to those of CAPE forecasts (compare Figs. 6.5 and 6.6). Upon first inspection, the simultaneous and regular
occurrence of zero CAPE and CIN may seem in contradiction. However, the explanation is that a closed

positive or negative area is not defined on a thermodynamic diagram if a lifted parcel fails to reach a level of
free convection or equilibrium level within its environment. Under this circumstance, the GEMPAK numerical

algorithm assigns zero CAPE and CIN to the sounding as lifted air parcels remain colder (more stable) than the

environmental temperature at all levels. Examination of the warm season data from XMR (not shown) used to
construct Figs. 6.3a and 6.4a reveals that instances of both zero CAPE and CIN occur in 4.9 and 2.8% of the

available forecasts and observations, respectively. Similarly, 33.9 and 39.3% of the cool season forecasts and

observations at XMR exhibit zero CAPE and CIN. The data for TBW demonslxate a comparable relationship.
These results indicate that warm season forecasts at XMR and TBW contain zero CIN and CAPE -- and are

therefore stable -- more often than the observed soundings. During the cool season, instances of zero CAPE
and CIN occur regularly, though the observed environment is often more stable than the forecast environment.

While considering all available data, the conditional median of the observations reveals that CIN is

regularly undefforecast during the warm season whenever the forecast CIN is near zero (Figs. 6.6a, b). The fact
that warm season forecasts of small (though not necessarily zero) CAPE and CIN both tend to underestimate

their corresponding observations suggests that the model's boundary layer error characteristics are different

from those in the free atmosphere. Indeed, the vertical profiles of temperature and mixing ratio bias (Figs. 5.1
and 5.2) each exhibit a shift in sign around the 700 mb level. During the cool season, the CIN forecasts are

conditionally unbiased when near zero (Figs. 6.6c, d). This cool season reliability likely follows from the
frequent occurrence of forecast and observed soundings with zero CAPE and CIN as discussed above. Given
larger CIN forecasts, the position of the conditional median relative to the 45* reference line indicates that CIN

is usually overforeeast during both the warm and cool seasons. However, since forecasts of large CIN are
relatively uncommon, this conditional bias should be considered cautiously.

6.2.7 Heficity

Positive and negative 0-3 km helicity (Lilly 1986; Davies-Jones et al. 1990) forecasts are nearly evenly
distributed about zero and are thus well refined during both warm and cool seasons at XMR and TBW (Fig.
6.7). Helicity forecasts with values near zero are conditionally unbiased. However, the lower slope of the
conditional median relative to the 45 ° reference line indicates that the magnitude of the helicity is often
overforecast, particularly during the warm season. The overall sample biases (Tables 6.2 and 6.3) are small but

do not fully represent the tendency to overforecast the magnitude of nonzero helicity values as revealed by Fig.
6.7. The frequency distribution of cool season helicity forecasts covers nearly double the range of values that
are forecast during the warm'season. The corresponding RMS errors and error standard deviations are also

approximately doubled during the cool season (Tables 6.2 and 6.3). Since helicity is a measure of the vertically

integrated wind shear over the lowest 3 lan of the atmosphere, the larger errors during the cool season are likely
related to an increase in forecast and observed wind speeds and corresponding wind shear.

6.2.8 Microburst Day Potential Index

The frequency distribution for Microburst Day Potential Index (MDPI; Wheeler and Roeder 1996) forecasts
indicates that most values occur in the range 0.8 to 0.9 during the warm season (Figs. 6.8a, b). The MDPI
forecasts are conditionally unbiased and therefore reliable when near 1.0. Given MDPI forecasts less than 1.0,
the potential for microburst development is often underforeeast relative to the conditional distribution of
observed MDPI. Conversely, the microburst potential is typically overestimated as the forecast MDPI exceeds

1.0. Note that at _ the conditional maximum observed MDPI reach 1.25 across nearly the entire range of
given forecast values (Fig 6.8a). Since MDPI values above 1.0 support a high probability of wet microburst

development at XMR (Wheeler and Roeder 1996), this result suggests that the model often fails to accurately
predict the environment conducive for observed microbursts. The slight negative bias in the overall sample
statistics (Table 6.2) supports the tendency to underestimate observed MDPI. During the cool season, the MDPI
forecasts cover a wider range of values (more refined) while the slope of the conditional median more closely
matches that of the 45* reference line (more reliable).
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Figure 6.6. Quartile diagram showing the conditional distribution of observed CIN (J kg d) associated with

given forecast values and a histogram of the marginal distribution of forecasts. For each forecast of CIN
(indicated by histogram), the minimum (maximum) observations are shown by stars (circles), the .25 and .75
quartiles are shown by dotted lines, and the .50 quartile (or median) is shown by a heavy solid line. See text for
additional details.
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7.0 850 to 500-mb Layer-Averages

The warm and cool season bias, RMS error, and error standard deviation for 1000- to 850-rob thickness and

850- to 500-rob layer-averaged winds and relative humidity are presented for XMR, TBW, and EDW in Table

7.1. The statistics were calculated as requested by the original evaluation protocol (Table 1.1). As with
convective parameters, calculations were performed using all available data from both the 0300 and 1500 UTC

model runs and corresponding observations.

The RMS errors for the 1000- to 850-mb thickness are less than 12 m during both warm and cool seasons at
XMR and TBW. The thickness errors are not indicated for EDW because the surface pressure at that location is

often less than 1000 mb. Forecast biases for the 850- to 500-rob layer-averaged relative humidity are less than
±2% except at EDW during the cool season. Notably, these biases arc smaller than the 2.5% observational

uncertainty associated with rawinsonde observations of relative humidity (Almert 1991). Wind speed biases are
small compared to the error standard deviation and RMS errors. These results are consistent with those shown

previously in Fig. 5.4 and further indicate that the greater portion of wind speed errors are obtained from

nonsystematic sources. Wind direction errors behave similarly, with near zero biases and relatively larger RMS
errors and error standard deviations.

Table 7.1. Warm and cool season bias, RMS error, and error standard deviation for 1000- to

850-rob thickness and 850- to 500-rob layer-averaged relative humidity, wind speed, and wind
direction.

Thickness(m)

Relative Humidity (%)

Wind Speed (m s"I)

Wind Direction (0)

Bias

Warm

XMR

TBW

EDW

XMR

TBW

EDW

XMR

TBW

EDW

XMR .32

TBW 3.72

EDW -6.37

RMS Error Error Std. Dev.

Cool Warm Cool Warm Cool

-3.02 7.27

1.11 6.31

-.51 .81

1.24 -1.37

1.32 3.38

.13 -.23

-.03 -.13

-.88 -.19

.01

1.76

-4.69

10.31 11.77

8.37 10.57

11.63 13.62

12.09 12.87

8.03 12.62

2.09 2.01

1.97 2.14

2.20 2.75

42.62 22.97

45.83 24.34

38.04 38.64

9.86 9.26

8.29 8.48

I1.62 13.60

12.02 12.79

7.92 12.16

2.08 2.00

1.97 2.14

2.02 2.74

42.62 22.97

45.68 24.28

37.50 38.35

8.0 Wind Regime Stratification

Within each seasonal evaluation period, the original evaluation protocol specified that the statistical
verification would be stratified by average wind direction in the layer from 950 to 600 nab using seven wind

regimes following HoNe et al. (1992). This type of stratification was designed to determine if the model forecast

errors are sensitive to specific flow regimes as defined by the layer-averaged wind directions. During the initial
evaluation period in 1996, it was determined that insufficient numbers of forecast/observation pairs were
available within each of the seven wind regimes. The small sample sizes made it difficult to draw meaningful
conclusions regarding error characteristics as a function of flow regime (Panofsky and Brier 1958). As a
simplification, westerly and easterly regimes were defined based on winds that are approximately perpendicular
to Florida's east coast. In particular, the 950- to 600-rob layer-averaged winds are considered westerly between
158 ° and 338" and easterly outside that range. As reported by MN97, this stratification also did not reveal any
substantial differences in the forecast error characteristics under easterly or westerly flow.
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The extensionof theevaluationfora second consecutiveyearhelpsmeliorate thedifficultyof insufficient

sample sizes. Again, the statisticswere stratifiedby the 950 to 600 mb layer averaged wind direction.

Examinationof the stratifiedstatistics(notshown) againdid not revealany substantialdifferencesinforecast

errorfrom one regime tothenext.On average,theobservationsdidindicatesubtle,yetexpectedchangesbased

on wind direction.However, theMcso-Eta model demonstratesthecapability,on average,tofollowshiftsinthe

mean observationsas a functionofwind regime. Therefore,themodel's overallforecasterrorcharacteristics

remain mostly unchanged regardlessof wind regime. In most cases,the varianceof the errorsunder the

differentregimesare similar.This resultsuggeststhatthe day-to-dayvariationsinthe forecasterrorsmay be

more difficulttoanticipatethanchangesintheoverallerrorcharacteristicsfordifferentregimes.

9.0 Summary of Subjective Forecast Value

Statisticalverificationofpointforecastsisa stringentmeasure ofmodel performance.However, when used

alone,the statisticsarenot enough to quantifytheoverallvaluethatmodel guidance may add to the forecast

process.This isespeciallytrucformodels with enhanced spatialand temporalresolutionthatmay be capableof

generatingmeteorologicallyconsistent,though not necessarilyaccuratemesoscale weather phenomena (e.g.

Cortinasand Stcnsrud 1995). With thisinmind, the AMU performed a subjectiveverificationof Meso-Eta

model forecaststo help quantifythe added valuethatcannotbe inferredsolelyfrom an objectiveevaluation.

Resultsfrom theAMU's subjectiveverificationoftheMeso-Eta model overtheFloridapeninsulaare discussed

intheearlierreporton theMeso-Eta evaluation(MN97) but are summarized here forcompleteness.Interested

readersare encouragedtocontacttheAMU fora copy ofthecompletereport.

The subjectiveevaluationincluded warm-season forecastexercisesand phenomenological verification

focusingprimarilyon limitedcase studiesand seasonalevaluationsof sea breezes,thunderstorms,and cold

fronts.Some resultsfrom the subjectiveevaluationthatmay be importantfor operationalforecastconcerns

includethe following.

Sea-breeze case studies reveal that the model generates a dynamically consistent,
thermally direct circulation over the Florida peninsula, although at a larger scale than
observed. Seasonal verification of sea breezes indicates that the model forecasts the

occurrence of east and/or west coast sea breezes roughly 50% of the time they are
observed.

Thunderstorm verification reveals that the meso-eta model is capable of predicting areas
of organized convection over portions of the Florida peninsula, particularly during the
late afternoon hours. On the other hand, the model is also subject to subtle errors that can
lead to incorrect forecasts of warm season convective precipitation. In particular, the

model often generates excessive rainfall during the morning hours and is not capable of
accurately forecasting individual thunderstorms.

Verification of cold fronts during the cool season reveals that the model is capable of
forecasting a majority of cold frontal passages through east central Florida to within + 1 h
of observed frontal passage.

Seasonal evaluations of sea breezes, thunderstorms, and cold fronts are designed to quantify how
consistently the Meso-Eta model provides value in forecasts of these phenomena. Results suggest that the model

forecasts over central Florida may have more value during the cool season. This statement is based on the fact
that the meso-eta model resolution is not sufficient to resolve the small-scale details of sea and fiver/lake breeze

circulations, thunderstorm outflow boundaries, and other phenomena which play a dominant role in determining
the short-term evolution of weather over east central Florida during the warm season.
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10.0 Summary and Lessons Learned

From May 1996 through January 1998, the AMU conducted warm- and cool-season evaluations of Meso-
Eta surface and upper-air point forecast accuracy at XMR, TBW, and EDW. These three locations were
selected because they are important for 45WS, NWS MLB, and SMG operational concerns. Each warm- and

cool-season verification period extends from May through August and October through January, respectively.
By extending the evaluation for a second consecutive year, it was possible to identify statistically significant
changes in the error characteristics which developed in response to the February and August 1997 model

updates (BL97; EMC 1997). The twin-season comparison of forecast accuracy is helpful for model users by
highlighting the model's characteristic strengths and weaknesses before and after the incorporation of model

updates. Such results are also helpful for model development efforts and emphasize the need for ongoing
analysis of model errors at specific locations.

10.1 Surface Results

The error characteristics for Meso-Eta point forecasts of surface parameters are summarized in Tables 4.1-

4.3. The surface error statistics are difficult to generalize because they vary widely by location, season, and time
of day. The results are utilized most effectively by considering the model biases for each parameter separately
and making the appropriate adjustments.

The random error component reveals substantial day-to-day variability in forecast accuracy. For many
parameters, the random errors are larger than the corresponding biases, or systematic model errors. The random

errors are caused primarily by the model's inability to resolve localized phenomena such as wind gusts,
temperature gradients, or the effects of thunderstorms. While it is possible to partially adjust for model biases, it

is much more difficult to accommodate the variability in forecast errors on any given day. It might help to
compare current observations with the latest forecast guidance and make appropriate adjustments.

As modeling systems such as the Meso-Eta attain greater resolution, they tend to exhibit smaller biases and

larger error standard deviations. The nonsystematic, random error component associated with any model's
inability to resolve local phenomena prevents perfect forecast guidance. However, the relatively minor biases
indicate that on average, point forecasts provide useful guidance for the basic seus_le weather variables
considered here.

Results shown in sections 4.2 and 4.3 indicate that changes to the model's physical parameterizations
produced identifiable and statistically significant changes in forecast accuracy at each location. Some changes
enhanced forecast accuracy while others created larger errors. It is important that model users maintain

awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics,
particularly near the surface.

10.2 Upper-air Results

Results from the upper-air verification are summarized in Tables 5.1 and 5.2. On average, the forecast
soundings at XMR and TBW during the warm season are too stable. The height of the lower tropospheric
inversion at XMR and TBW was misrepresented during the cool season. Forecast biases for wind speed and
direction are small at all three locations, but the random error component dominates the day-to-day variability.

Given this variability, real-time assessment of forecast accuracy is necessary on any given day to help users
determine ff the model forecasts are consistent with current observations.

The statistics did not reveal annual changes in forecast errors that could be atwibuted solely to the February

and August 1997 model updates. The model's systematic error growth during the forecast cycle is minimal
(section 5.3), implying that all data could be combined into a single dataset regardless of duration. Moreover,
since error growth is minimal, the characteristics outlined in Tables 5.1 and 5.2 apply, on average, at any time
during the forecast period. This generality does not apply to the surface data where error characteristics varied
with time of day.
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10.3 Convective Index Results

Convective index results are summarized in section 6.1. In general, the results suggest that day-to-day
fluctuations in observed convective indices at XMR and TBW are not well represented by the Meso-Eta model
throughout the warm season. In addition, the conditional quartile diagrams suggest that forecasts occasionally
suffer large errors in representing the true convective potential of the atmosphere. The forecast biases and

variability of the errors are confirmed by the overall sample statistics (Tables 6.2 and 6.3) and support the notion
that much of the error at upper levels is largely nonsystematic in nature. The convective index forecasts are
most reliable overall during the cool season when, under normal circumstances, they provide little added value

for most operational forecasting applications.

10.4 Layer Averages and Wind Regime Stratification

The I000- to 850-rob thickness and 850- to 500-mb layer averaged relative humidity and winds indicate that
biases in Meso-Eta forecasts for these parameters are small relative to the error standard deviations. This result
suggests that the middle tropospheric errors are dominated by day-to-day variations in the difference between

the forecasts and observations. Stratification of errors by the 950- to 600-mb wind direction does not reveal any
substantial changes in error characteristics, and further indicates that the day-to-day variations in the forecast
errors may be more difficult to anticipate than more general changes in the overall error characteristics under

different wind regimes.

10.5 Lessons and Recommendations

The AMU's statistical evaluation of Meso-Eta forecast accuracy identified a few biases that may result from
inadequate parameterization of physical processes near the surface. Since the model bias or systematic error

generally is small, most of the total model error results from day-to-day variability in the forecasts and/or
observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample
spatial and temporal scales of atmospheric phenomena which cannot be resolved by the model. On average,
Meso-Eta point forecasts may provide useful guidance for predicting the evolution of the larger scale
environment. A more substantial challenge facing model users in real time is the discrimination of
nonsystematic errors that could inflate the total forecast error.

It is important that forecasters maintain an ongoing awareness of model updates and the effects that such
changes will have on point forecast accuracy within their area of responsibility. While model updates are
generally well tested and designed to improve forecast accuracy, the results shown here demonstrate that the

desired effects do not always yield the expected improvements at every location. This may become particularly
true as national-scale, operational models with greater horizontal and vertical resolutions are able to forecast
explicitly the complex processes that occur within the PBL. In recent years, information documenting model
updates has been made available regularly on the interact. Indeed, much of the information needed for writing
this report and maintaining an understanding the model changes was obtained from an interact FAQ written
expressly for this purpose (EMC 1997). As forecasters discover localized model deficiencies through ongoing
real-time statistical verification strategies, results should be documented regularly and shared with model

developers. As expressed by Manning and Davis (1997), "These statistics would provide additional information
to model users and alert model developers to those research areas that need more attention". The additional and
complementary need for subjective verification strategies in mesoscale models is discussed in the earlier report

by M'N97.

On 9 February 1998, NCEP upgraded the horizontal resolution of the "early" Eta model from 48 to 32 kin,
with an increase in vertical resolution from 38 to 45 levels (Rogers et al. 1997). In addition, a three-dimensionai
variational analysis scheme was implemented along with the use of a "partial" continuous Eta Data Assimilation
Cycle. Aside from the differences in data assimilation methods at the time of this writing, this version of the
"early" Eta is similar in resolution and dynamics to the Meso-Eta model version evaluated here. Therefore the
objective verification results presented here for XMR, TBW and EDW and the subjective verification results
presented in MN97 should establish a reasonable benchmark from which model users and developers may

pursue ongoing Eta model verification strategies in the future.
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Appendix A

EtaModelOverview

The primary mesoscale modeling efforts at NCEP are focused on the development of the Eta model (Rogers
et al. 1995). The original version of the Eta model with a horizontal resolution of 80 km and 38 vertical layers
replaced the Limited-Area Fine Mesh model in June 1993 (Black 1994). In October 1995, NCEP increased the

horizontal resolution of the operational "early" Eta model from 80 km to 48 kin. At the same time, a cloud
prediction scheme (Zhao et al. 1997) was implemented and initial analyses were produced using the Eta Data
Assimilation System (Rogers et al. 1996). In August 1995, NCEP also began running a mesoscale version of the

Eta (meso-eta) model with a horizontal resolution of 29 km and 50 vertical layers (Mesinger 1996). Following
model upgrades on 31 January 1996 (Chen et al. 1996; Janjic 1996a; Janjic 1996b; Janjic 1996c; Betts et al.

1997), the "early" and Meso-Eta model configurations became identical except for resolution and data
assimilation procedures. The relevant numerics and physics of the Eta model are summarized in Table A. 1.

NCEP implemented two major changes to the Eta model's physical parameterizations during the AMU's
objective evaluation period. On 18 February 1997, components of the soil, cloud, and radiation packages were

updated in both models (Betts et al. 1997; Black et al. 1997; EMC 1997). These modifications were designed to
help control excessive net shortwave radiation at the ground that led indirectly to a bias in the diurnal range of
surface temperatures, excessive mixing of the planetary boundary layer (PBL), and a negative bias in surface
dew point temperatures. On 19 August 1997, calculation of the model's PBL depth was adjusted to correct for

an underestimation of vertical moisture transport out of the lowest model layers (EMC 1997). A portion of the
results shown below indicate that combined effects of these changes led to identifiable and statistically
significant changes in forecast accuracy for a few selected parameters.

Table A. 1. Eta model attributes from Black (1994), Janjic (1994), and

Ro_ers et al. (1996).
Dynamics

Model top = 25 mb
Time step = 72 s

Semi-staggered Arakawa E-grid
Gravity wave coupling scheme

Silhouette-mean orography

Split-explicit time differencing
Physics

Explicit grid-scale cloud and precipitation
Modified Betts-MiUer convective adjustment

Mellor-Yamada (2.5) for free atmosphere vertical turbulent exchange
Mellor-Yamada (2.0) near ground

Geophysical Fluid Dynamics Laboratory radiation scheme

Viscous subla:cer over water
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Appendix B

Statistical Verification Techniques

The statistical measures used here to quantify model forecast errors are the bias, root mean square (RMS)

error, and standard deviation. If F represents any of the parameters under consideration for a given time and

vertical level, then forecast error is defined as _' = Of - _o where the subscripts fand o denote forecast and

observed quantities, respectively. Given N valid pairs of forecasts and observations, the bias is computed as

03.1),

theRMS erroriscomputed as

I_S N ]1/2RMSE = [MSE] I/2 = /_=!((1); )2
03.2),

and the standard deviation of the errors is computed as

03.3).

In equation 03.3), N is used rather than N-1 so that a decomposition following Murphy (1988, Eq. 9) could
be applied to the MSE:

MSE = "_,2 + O_2
03.4).

Therefore, the total model error consists of contributions from model biases (-O'2) and random variations in the

forecast and/or observed data (o .'2 ). Note that if the model bias or systematic error is small, most of the MSE is

due to random, nonsystematic type variability in the errors. Murphy's (1988) decomposition of the MSE
considered individually the error contributions from the model bias and from the sample variances and

covariance of the forecasts and observations. Here, Eq. B.4 represents an algebraic simplification of that
decomposition and quantifies the portion of the MSE that is due to the bias and the variance of the forecast
errors.

Tests are applied to the surface data in order to determine ff model updates led to statistically significant
changes in mean forecast error between the 1996 and 1997 warm and cool season periods. Following the
Central Limit Theorem as described in most statistical texts, it is assumed that the sampling distribution for the

difference in mean forecast error between 1996 and 1997 is approximately normal. Sample sizes of O(100) for
each season enable use of the standardized Z statistic where

m

03.5),

the variance inflation factor, _ = (I + r)/(1 - r), and r is the lag-I day autoeorrelation for each seasonal time

series of data. The variance inflation factor helps prevent the overestimation of Z by adjusting the variance of
the sampling distribution to account for the influence of serial dependence, or day-to-day persistence, within the
seasonal time series average 0Vilks 1995). A two-tailed comparison of Z to the normal distribution using a 99%
confidence level has critical values of±2.58 (Walpole and Meyers 1989). Calculated values of Z that lie outside

this critical range indicate that the data are able to support a statistically significant difference between the 1996
and 1997 seasonal mean forecast errors.
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Thestatisticalsignificanceof upper-level systematic error growth from early to latter stages of the forecast
cycle is determined using a paired Z statistic. The paired Z statistic normalizes the seasonally averaged

difference in forecast error between two times during the ith cycle by the associated sample standard deviation.
The covariance between errors in the early and latter stages of the forecast is included because the parameters
from the ith cycle are not independent and do not necessarily have equal variances 0Nalpole and Meyers 1989).

Here, the paired Z statistic is denoted by Z' where

N t

Z'

The subscripts 1 and 2 denote variables from the ith forecast cycle verifying at 6-9 h and 30-33 h, respectively.

The times used for verification are separated by 24 h and are taken at forecast durations that vary slightly

according to balloon release times. Other notations are as above except that (o-'t2) 2 denotes the sample

covariance. Again using a 99% confidence level, values of Z' that lie outside the critical values of ±2.58

indicate that the data are able to support a statistically significant 24-h systematic error growth in the upper-air
forecasts.
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Appendix C

Upper Level Wind Errors Listed as a Function of Height

As specified in the original evaluation protocol, objective verification results are listed as a function of
geopotential height. The wind variables are of primary interest for applications to Shuttle flight rules and are

listed in tabular format for direct reference. Plots of wind speed and direction errors as a function of height (not
shown) exhibit exactly the same characteristics as those shown in Figs. 5.3 and 5.4. Therefore, the discussions

in sections 5.3 and 5.4 are applicable to the wind speed and direction errors listed below. Although results for u
and v wind components are not discussed in previous sections they are generally consistent with results for wind

speed. As discussed at the beginning of section 5, substantial differences do not appear to exist between the
0300 and 1500 UTC forecast cycles. Moreover, the statistics do not reveal any obvious differences when the
results are stratified by the 950- to 600-mb layer-averaged wind direction. For these reasons, all available data
from each season are included in the statistical calculations below. Results from TBW are not shown but are m

fact very similar to those shown below for XMR. At EDW, results below 3000 ft are not available since the
lowest level of data extracted from model point forecasts at that location is at an elevation of 3238 ft.
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TableC. 1. Warm season biases for wind variables at XMR and EDW as a function of geopotential height.

Height (lift):

I

2

3

5

10

12

20

25

28

35

38

45

50

55

60

70

U-wind (ms -1)

XMR EDW

.21 ---
l
i -.14 ---
I
I -.44 ---
l
' -.64 -.80

-.02 -. 15
I
i .18 -.04

-.52 -.71

-.46 -.98

-. 11 -.62

.53 -.42

.68 -.38

.90 -.75

, 1.20 -.90

1.70 1.09

3.50 2.89

8.15 5.04

V-wind (ms "I)

XMR EDW

-.27 --

.13 ---

.41 ---

.65 -.92

-.40 .27

-.60 .26

-.20 1.00

-.37 1.25

-.39 1.53

-.30 1.29

.04 1.24

.68 1.35

.28 .40

.34 .71

1.35 -.65

4.29 -.59

Wind Speed (ms "l)

XMR EDW

.16 ---

.48 ---

.47 --

.33 -1.24

.07 -1.04

-.01 -.89

-.34 .05

-.22 -.44

-. 13 -.24

.16 -.15

-.01 .02

.48 -.79

.85 -1.05

.34 .01

-.72 -.23

-3.66 -1.70

Wind Direction(o)

XMR EDW

1.37 ---

1.31 ---

3.05 ---

-6.45 -2.62

-1.04 -6.91

2.17 -7.53

-.72 -9.22

-1.45 -10.29

1.14 -8.59

-1.25 -5.22

-2.65 -4.05

-4.85 -2.81

-4.89 -1.91

-3.21 -.39

3.27 10.64

35.63 9.87

Table C.2. Cool season biases for wind variables at XMR and EDW as a function of _eopotential heig_ht.

Height (kft):

1

2

3

5

10

12

20

25

28

35

38

45

5O

55

60

7O

U-wind (ms "l)

XMR EDW

-.16 ---

-.67 ---

-.80 --

-.65 -2.07

-.33 -1.03

-.41 -.79

-.71 .95

-.37 1.18

-.43 1.75

-.10 2.27

-.18 2.18

.70 2.96

.45 i.80

1.75 2.09

5.96 2.83

9.47 4.51

V-wind (ms "])

XMR EDW

-.28 ---

-.12 --

.25 ---

.46 .05

-.07 1.15

-.18 1.74

-.34 2.11

-.43 2.44

-.25 2.57

.06 2.73

.38 2.71

.63 1.01

-.05 2.42

-.34 .33

-.02 .38

1.54 - 1.94

Wind Speed (m $-1)

XMR EDW

.34 ---

.86 ---

.53 --

-.03 -.93

-.22 -.45

-.36 -.59

-.66 .75

-.48 .68

-.54 1.87

-.39 1.43

-.32 1.61

.84 2.31

.27 1.23

1.89 1.85

5.16 2.76

7.14 4.47

Wind Direction(o)

XMR EDW

-.23 w

.23 --

3.41 --

.32 -.20

-.10 -4.82

.44 -2.29

1.21 -7.02

1.76 -8.70

1.21 -7.29

-.17 -7.35

-1.34 -6.48

-1.I0 -3.88

-.12 -7.11

-1.03 -5.79

-5.16 .4.43

-.12 4.69
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TableC.3.

Height

I

2

3

5

10

12

20

25

28

35

38

45

50

55

60

70

(lift):

Warm seasonRMS errorsforwind variablesatXMR and EDW asa functionofgeopotential

h ie t.
U-wind (ms "l) V-wind (ms "l) Wind Speed (m sq) Wind Direction (o)

XMR EDW XMR EDW

3.10

2.90 ---

2.93 --

3.18 3.14

2.85 3.01

2.89 3.25

2.86 3.65

3.12 3.77

3.33 4.17

4.62 4.46

5.21 4.83

5.41 4.92

4.40 4.05

3.85 4.09

3.56 3.58

5.69 3.22

XMR EDW

2.66 ---

2.74 ---

2.80

2.93 3.78

2.90 2.93

2.99 3.32

2.75 3.48

3.01 3.62

3.55 3.52

4.78 4.47

5.33 4.71

5.26 4.50

4.67 3.98

3.89 3.89

3.94 3.60

6.17 4.94

XMR EDW

53.20 --

51.81 --

54.56 ---

57.16 47.05

49.62 48.27

48.97 43.23

45.19 34.39

44.90 27.68

44.00 26.99

42.91 23.54

40.93 19.14

37.65 20.37

42.33 24.77

52.14 37.31

57.40 55.59

82.92 59.58

3.01

2.87 m

2.85 --

3.05 3.95

3.01 3.26

3.00 3.38

3.09 3.70

3.42 3.87

3.81 3.49

4.99 4.33

5.57 4.52

5.36 4.13

4.80 3.77

4.37 4.07

4.72 4.88

8.88 6.05

Table C.4. Cool season RMS errors for wind variables at XMR and EDW a function of geopotential height

(lift): U-wind (m s"t) V-wind (ms "t) Wind Speed (m sq ) Wind Direction (o)Height

1

2

3

5

10

12

20

25

28

35

38

45

5O

55

60

70

XMR EDW

2.67

2.66

3.01 ---

3.33 4.38

2.90 4.30

2.95 4.87

3.64 5.50

3.76 6.99

XMR EDW

.04 _m_

3.16 ---

3.13

3.37 3.23

3.26 4.53

3.18 4.96

3.61 6.98

3.97 7.89

XMR EDW

2.64 m

2.84

3.04 m

3.27 3.68

2.89 3.81

2.92 4.22

3.62 5.72

3.75 6.90

XMR EDW

38.11 --

38.52 --

40.01

40.13 61.70

32.33 46.99

30.83 44.16

23.51 31.21

20.17 31.57

16.09 26.88

12.61 23.51

12.76 24.23

11.41 21.71

11.82 23.85

16.79 27.62

37.16 22.88

68.87 33.26

4.08 7.10

5.57 7.99

5.16 7.94

5.11 8.24

5.22 6.52

4.53 5.70

7.08 6.08

10.15 6.95

4.09 8.04

5.26 10.33

5.06 9.90

5.71 7.21

5.17 6.60

4.33 6.84

4.13 7.41

5.56 8.05

5,14 8.81

5.23 7.51

5.11 5.99

4.46 5.73

3.88 4.91

4.57 5.04

6.50 6.30

8.81 6.89
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TableC.5.

Height(lift):

1
2
3
5

10
12
20
25
28
35
38
45
50
55
60
70

WarmseasonerrorstandarddeviationsforwindvariablesatXMRand EDW as a function of

geopotential height.

U-wind (ms "l) V-wind (ms "l) Wind Speed (ms "t) ] Wind Direction (o)

XMR EDW XMR EDW

3.09 --

2.90 --

2.90

3.12 3.01

2.83 3.00

2.83 3.24

2.86 3.51

3.10 3.56

3.31 3.88

4.61 4.26

5.21 4.67

5.37 4.73

4.39 4.03

3.83 4.02

3.30 3.52

3.74 3.17

XMR EDW

2.66 --

2.70 --

2.76

2.91 3.57

2.90 2.74

2.99 3.20

2.73 3.48

3.00 3.59

3.55 3.51

4.77 4.47

5.33 4.71

5.24 4.43

4.60 3.84

3.88 3.89

3.87 3.60

4.96 4.63

XMR EDW

53.18 ---

51.79 --

54.48

56.80 46.98

49.61 47.78

48.92 42.57

45.18 33.13

44.88 25.69

43.99 25.59

42.89 22.96

40.84 18.70

37.33 20.18

42.05 24.69

52.04 37.31

57.31 54.56

74.87 58.76

3.00

2.87 ---

2.82 --

2.98 3.87

3.01 3.26

2.99 3.38

3.05 3.63

3.39 3.74

3.81 3.43

4.96 4.31

5.53 4.50

5.29 4.06

4.65 3.66

4.02 3.92

3.17 3.93

3.54 3.34

Table C.6

Height (lift):

1

2

3

5

10

12

20

25

28

35

38

45

5O

55

60

70

Cool season error standard deviations for wind variables at EDW as a function of geopotential

height.

U-wind (m s"l) V-wind (ms "1) Wind Speed (m s"1) Wind Direction (o)

XMR EDW XMR EDW

3.03 ---

3.16 --

3.12 ---

3.33 3.23

3.25 4.39

3.17 4.65

3.59 6.65

3.95 7.50

4.08 7.62

5.26 9.96

5.04 9.52

5.68 7.14

5.17 6.14

4.32 6.83

3.88 4.90

4.30 4.65

XMR EDW

2.62 m

2.70

2.99

3.27 3.56

2.88 3.79

2.89 4.18

3.56 5.67

3.72 6.87

4.09 7.17

5.55 7.92

5.13 8.67

5.17 7.15

5.10 5.86

4.04 5.43

3.95 5.66

5.16 5.25

XMR EDW

38.11 --

38.52 --

39.86

40.13 61.70

32.33 46.74

30.83 44.10

23.48 30.41

20.09 30.35

16.05 25.88

12.61 22.34

12.69 23.34

11.36 21.36

11.82 22.77

16.76 27.01

36.80 22.45

68.87 32.92

2.66

2.57 --

2.91 ---

3.26 3.86

2.88 4.17

2.92 4.81

3.57 5.42

3.74 6.89

4.06 6.88

5.57 7.66

5.16 7.64

5.06 7.69

5.20 6.27

4.18 5.30

3.81 5.38

3.65 5.29

57



Appendix D

Conditional Quartile Diagrams

Although traditional statistics such as the bias and RMS error are useful for quantifying overall forecast

accuracy within a particular sample of data, they fail to descnl)e completely the character of the relationship
between given forecasts and their corresponding observations. Murphy et al. (1989) demonstrate that such
relationships are revealed, in part, by considering a factorization of the joint distribution between forecasts 09

and their observations (x). Given a set of data containing f and x, the joint distribution p_x) specifies the
relative frequency of occurrence for particular combinations of f and x. The factorization for the joint
distribution considered here is p(f,x) = p(x[/)p(f), where p(]) is the marginal distribution of the forecasts and

p(xLO is the conditional distribution of the observations given the forecasts. Given the set of available forecasts,
f, the marginal distribution p(f) describes the relative frequency of occurrence for each forecast value (or
discretized range of values). The conditional distribution of the observations given the forecasts, p(xLt),

specifies the marginal distribution of the subset of all observations x which correspond to a particular forecast.

The factorization ofp(f,x) is useful because p(xL/) and p(/) specify the calibration and refinement of the
forecasts, respectively (Murphy et al. 1989). A set of forecasts are perfectly calibrated if, for each forecast f, the
mean observation is equal to f. A set of forecasts are completely unrefined if the same forecast value is

produced on each occasion. Therefore, a set of forecasts may be considered well refined and reliable if the
marginal distribution of forecasts p(f) covers an appropriate range of values and the average of the conditional
distribution of observations is equal to the forecast,f

The relationship betweenp(xLf) and p(/) may be interpreted graphically using a conditional quartile diagram
(Murphy et al. 1989). For each set of convective index forecasts, the marginal distribution of the forecast
values, p(]), is displayed (Figs. 6.1 - 6.8) using histograms. In addition, the conditional distribution of the
observations, p(xL/), is summarized for each given forecast value by the median, interquartile range (IQR), and
minimum and maximum values. The median represents the middle value of a set of ordered data and is
alternately called the 50th percentile or 2rid quartile. Similarly, the IQR represents the difference between the

3rd and 1st quartiles (75th and 25th percentiles). The quartile lines extend across those index values which are
forecast on at least five occasions and have been smoothed using a simple 3-point hauning algorithm (Tukey
1977). Deviations of the conditional medians from the 45 ° reference line reveal that the forecasts are

conditionally biased. Specifically, deviations above (below) this line indicate forecasts from a particular
category which are more often smaller (larger) than observed. More generally, the diagrams utilize five data

points (minimum, 1st, 2nd and 3rd quartiles, and maximum) to describe the character of the conditional
distributions for the observations associated with each given forecast value.

Although the terminology is complex, the conditional quartile plots aid operational users by serving as a

kind of historical lookup diagram which helps visualize the relationship between given forecasts and
observations. For example, if the Meso-Eta model provides a precipitable water (PWAT) forecast of 30 man at
XIVlR during the warm season, Fig. 6.1a indicates that such a forecast is traditionally uncommon and
conditionally unbiased, and that 50% of the observations (i.e., the IQR) were within about +5 mm of that given
forecast value.
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Appendix E

Summary of MesooEta Model Point Forecast Error Characteristics

for

XMR; TBW; EDW

1. Surface Parameter Forecasts (Tables E.1-E.3)

Error characteristics for surface parameter forecasts vary widely by location, season, and time of day. The

statistics can be utilized most effectively by considering the model biases for each parameter separately. For

example, the fact that Meso-Eta wind speed forecasts are too fast on average at XMR (Table 1) suggests that

forecast accuracy might be improved by adjusting such guidance to lower speeds. Similar adjustments should

be made to accommodate the biases identified for other parameters.

The random error component reveals substantial day-to-day variability in forecast accuracy. The random

errors are caused primarily by the model's inability to resolve localized phenomena such as wind gusts,

temperature gradients, or the effects of thunderstorms. While it is possible to partially adjust for model biases, it

is much more difficult to accommodate the variability in forecast errors on any given day. It might help to

compare current observations with the latest forecast guidance and make appropriate adjustments.

On average, the model provides useful guidance for time-averaged environmental parameters such as

METAR observations. However, the model does not have sufficient resolution to forecast events such as peak

wind gusts.

It is important that users maintain awareness of ongoing model changes. Such changes are likely to modify

the basic error characteristics, particularly near the surface.
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TableE.1. Summary of Meso-Eta forecast biases (forecast - observed), RMS errors, and error standard

deviations for surface parameters at XMR during the warm (May through Aug 1997) and cool (Oct 1997
through Jan 1998) seasons. A range of errors reveals fluctuations with time of day as demonstrated in sections
4.2 and 4.3.

Variable Season RMS

Sea-level Warm 1

Pressure

(mb) Cool 1

Warm 1 to2
Temp.

(oc) Cool 2

Dew Warm 1 to 2
Point

(°C) Cool 1 to 3

Wind Warm 2

Speed
(m $ "l) Cool 2 to 3

Wind Warm 50 to 70
Dir.

(°) Cool 40 to 60

Bias

-1 toO

_+0.5

+1

0to 1

-1 toO

Oto2

0to2

1 to3

+10

+I0

StdDev

I to2

2

1 to2

1 to2

lto2

1.5

50 to 70

40 to 60

Interpretation

Forecasts tend to be slightly lower than observed.

Small, variable forecast bias with random errors of
lmb.

Forecasts are slightly warm in afternoon, slightly
cool at night. Large random error component.

Slight warm bias throughout the forecast cycle.
Random error contributes more than bias.

Forecasts are slightly dry on average. Random error
contributes more than bias.

Forecasts are typically wetter than observed.

Forecast winds are too fast on average.

Forecast winds are too fast on average.

Forecastsarenearlyunbiasedalthoughrandom

errorsarelarge.

Same aswarm seasonexceptrandom errorsare

slightly smaller.

Table E.2. Summary of Meso-Eta forecast biases (forecast - observed), RMS errors, and error standard
deviations for surface parameters at TBW during the warm (May through Aug 1997) and cool (Oct 1997
through Jan 1998) seasons. A range of errors reveals fluctuations with time of day as demonstrated in sections
4.2 and 4.3.

Variable Season RMS Bias

Sea-level Warm I -I to 0
Pressure

(rob) Cool 1 _+0.5

Warm 2.5 -3 to 1
Temp.

(°C) Cool 1 to 3 -1 to 3

Dew Warm 1 to 2 -I to 0
Point

(°C) Cool 1 to 3 0

Wind Warm 1.5 + 1

Speed
(m s-l) Cool 2 0 to I

Wind Warm 50 to 80 -30 to 0

Dir.

(o) Cool 30 to 50 -20 to 0
I

Std Dev

Ito2

1 to2

1 to2

1 to3

lto2

1.5

50 to 80

30 to 50

Interpretation

Forecasts tend to be slightly lower than observed.

Small, variable forecast bias with random errors of
lmb.

Forecasts are too warm in the afternoon, too cool at
night.

Forecasts are too warm in the afternoon, too cool at
night.

Forecasts are slightly dry on average. Random error
contributes more than bias.

Forecasts are unbiased but random errors reduce

accuracy.
Small forecast bias. Random error conlributes more

than bias.

Forecast winds are slightly fast on average.

Forecast winds should be backed slightly to better
match the observations.

Same as warm season except random errors are
smaller.
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TableE.3. Summaryof Meso-Etaforecastbiases(forecast- observed), RMS errors, and error standard

deviations for surface parameters at EDW during the warm (May through Aug 1997) and cool (Oct 1997
through Jan 1998) seasons. A range of errors reveals fluctuations with time of day as demonstrated in sections
4.2 and 4.3.

Variable Season RMS

Sea-level Warm 1 to 3

Pressure

(mb) Cool 2 to 3

Warm 3 to 6
Temp.

(°C) Cool 3 to 5

Dew Warm 3 to 9

Point

(°C) Cool 3 to 6

Wind Warm 2 to 6

Speed
(ms "1) Cool 2 to 3

Wind Warm 20 to 90
Dir.

(o) Cool 60 to 90

Bias

-2to 0

0to3

-6 to -2

-4to0

0to8

-lto5

-7 to -1

-2toO

0to30

0to30

Std Dev

1.5

2

lto3

2to4

3 to 5

3.5

1.5 to3

2

20 to 90

60 to 90

Interpretation

Forecasts tend to be lower than observed.

Forecasts tend to be greater than observed.

Forecasts are too cold on average.

Forecasts are too cold on average, especially during
the daytime.

Forecasts are too moist on average, especially
during the daytime.

Forecasts are mostly wetter than observed,
especially during the daytime.

Forecasts too slow on average, especially during the
daytime.

Forecasts too slow on average.

Forecast winds should be veered slightly overnight
to better match the observations.

Same as warm season.

61



2. Upper-Air Forecasts (Tables E.4-E.5)

Upper-air statistics were computed using all available data collected during the twin warm and cool season

periods. Since model biases do not significantly increase with time at upper-levels, the error characteristics

outlined in Tables E.4 and E.5 apply at any time during the forecast period. This generality does not apply to
surface forecasts where error characteristics vary with time of day.

Table E.4.

Warm Season (May- Aug)

Summary of Meso-Eta upper-air forecast error characteristics at XMR and TBW.

Cool Season (Oct - Jan)

On average, forecasts are about 1 °C too cold below
700 mb and 1 to 2 °C too warm above 700 rob.

Forecasts are too dry below 800 nab and too moist
above 500 mb.

temperature and moisture biases indicate that
forecast soundings arc too stable on average. This

could be a consequence of the model's convective
rainfall parameterization.

The

Wind speed forecasts are nearly unbiased in the lower

and middle troposphere, but are typically too fast
above 400 rob.

Wind direction forecast biases are less than _+10° but

the random error component of 40 to 60 °

dominates the day-to-dayvariability.

The height of the lower tropospherictemperature

inversionisoften overforecast,therebycreatinga

2 °C coldbiasnearthe700-roblevel.

Wind speed forecasts are about 1 m s"1 too slow in the
middle troposphere and about 1 m s"I too fast in

the upper troposphere.

Wind direction forecast biases are less than +10 °, but

the random error component of 10 to 40 °

dominatesthe day-to-day variability.

Table E.5.

Warm Season (May- Aug)

Summary of Meso-Eta upper-air forecast error characteristics at EDW.

Cool Season (Oct - Jan)

Temperature biases are less than _+I°C.

Forecasts tend to retain greater amounts of moisture
than observed except near the 600 mb level.

Wind speed forecasts are 1 to 2 m sL too slow, but the

random error component of 3 to 5 m s-I dominates
the day-to-day variability.

On average, wind direction forecasts are backed about

10° relative to observations. The random error

component of 30 to 60 ° dominates the day-to-day

variability.

A strong cold bias exists in the forecasts below
700 mb. The bias exceeds --4 °C near the surface.

Forecasts are too moist near the surface, and too dry
above 800 mb.

Wind speeds are 1 to 2 m s_ too slow on average

except near the tropopause. The random error
component exceeds 6 m sq.

On average, wind direction forecasts are backed about
10° relative to observations. The random error

component of 30 to 90 ° dominates the day-to-day
variability.
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3. Convective Index Forecasts (XMR; Table E.6)

Convective indices are vertically integrated quantities. Therefore, slight errors in the forecast vertical

profiles of temperature, moisture, and/or winds are exacerbated through the computation of convective index

error characteristics. The day-to-day variability in observed convective indices is not predicted well by the

Meso-Eta model. The errors tend to smallest during the cool season when, under normal circumstances, they
provide little added value for operational forecasting purposes.

Table E.6. Meso-Eta point forecast error characteristics for convective indices at XMR during the 1996 and
1997 warm seasons (May-Aug).

Index Forecast Error Characteristics

Precipitable Forecasts have a slight dry bias, but are generally accurate across a wide range of values.
Water

Forecasts are more stable than observed. The forecasts tend to be most accurate when
Lifted Index

their values are around -3 to -4 °C but the day-to-day variations are not handled well.

K-index Forecast biases are small but a large random error component limits their utility.

LCL Forecast accuracy decreases at lower pressures (greater heights).

CAPE Forecasts are too small (stable) on average and are susceptible to very large errors.

0-3 km Helicity Forecasts tend to overestimate the magnitude of the vertically integrated wind shear.

Forecasts are most reliable when values are near 1.0 but a large random error componentMDPI
limits their utility.
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Mention of a copyrighted, trademarked or proprietary product, service, or document does not constitute

endorsement thereof by the author, ENSCO, Inc., the AMU, the National Aeronautics and Space
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the reader of the resources used to conduct the work reported herein.
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